Abstract:
Scan testing of plural target electrical circuits, such as circuits 1 through N, becomes accelerated by using the scan test response data output from one circuit, such as circuit 1, as the scan test stimulus data for another circuit, such as circuit 2. After reset, a scan path captures the output response data from the reset stimulus from all circuits. A tester then shifts the captured data only the length of the first circuit's scan path while loading the first circuit's scan path with new test stimulus data. The new response data from all the circuits then is captured in the scan path. This shift and capture cycle is repeated until the first circuit is tested. The first circuit is then disabled and any remaining stimulus data is applied to the second circuit. This process is repeated until all the circuits are tested. A data retaining boundary scan cell used in the scan testing connects the output of an additional multiplexer as the input to a boundary cell. The inputs of the additional multiplexer connect to the data input and data output of the boundary cell.
Abstract:
A test controller applies test stimulus signals to the input pads of plural die on a wafer in parallel. The test controller also applies encoded test response signals to the output pads of the plural die in parallel. The encoded test response signals are decoded on the die and compared to core test response signals produced from applying the test stimulus signals to core circuits on the die. The comparison produces pass/fail signals that are loaded in to scan cells of an IEEE 1149.1 scan path. The pass/fail signals then may be scanned out of the die to determine the results of the test.
Abstract:
A test architecture accesses IP core test wrappers within an IC using a Link Instruction Register (LIR). An IEEE P1500 standard is in development for providing test access to these individual cores via a test structure called a wrapper. The wrapper resides at the boundary of the core and provides a way to test the core and the interconnections between cores. The test architecture enables each of the plural wrappers in the IC, including wrappers in cores embedded within other cores, with separate enable signals.
Abstract:
The present disclosure describes using the JTAG Tap's TMS and/or TCK terminals as general purpose serial Input/Output (I/O) Manchester coded communication terminals. The Tap's TMS and/or TCK terminal can be used as a serial I/O communication channel between; (1) an IC and an external controller, (2) between a first and second IC, or (3) between a first and second core circuit within an IC. The use of the TMS and/or TCK terminal as serial I/O channels, as described, does not effect the standardized operation of the JTAG Tap, since the TMS and/or TCK I/O operations occur while the Tap is placed in a non-active steady state.
Abstract:
Data is communicated through two separate circuits or circuit groups, each having clock and mode inputs, by sequentially reversing the role of the clock and mode inputs. The data communication circuits have data inputs, data outputs, a clock input for timing or synchronizing the data input and/or output communication, and a mode input for controlling the data input and/or output communication. A clock/mode signal connects to the clock input of one circuit and to the mode input of the other circuit. A mode/clock signal connects to the mode input of the one circuit and to the clock input of the other circuit. The role of the mode and clock signals on the mode/clock and clock/mode signals, or their reversal, selects one or the other of the data communication circuits.
Abstract:
Scan architectures are commonly used to test digital circuitry in integrated circuits. The present disclosure describes a method of adapting conventional scan architectures into a low power scan architecture. The low power scan architecture maintains the test time of conventional scan architectures, while requiring significantly less operational power than conventional scan architectures. The low power scan architecture is advantageous to IC/die manufacturers since it allows a larger number of circuits (such as DSP or CPU core circuits) embedded in an IC/die to be tested in parallel without consuming too much power within the IC/die. Since the low power scan architecture reduces test power consumption, it is possible to simultaneously test more die on a wafer than previously possible using conventional scan architectures. This allows wafer test times to be reduced which reduces the manufacturing cost of each die on the wafer.
Abstract:
The peripheral circuitry (350, 360, ESD, BH) of an integrated circuit die on a wafer is tested without physically contacting the bond pads of the die.
Abstract:
The disclosure describes novel methods and apparatuses for controlling a device's TCA circuit when the device exists in a JTAG daisy-chain arrangement with other devices. The methods and apparatuses allow the TCA test pattern set used during device manufacturing to be reused when the device is placed in a JTAG daisy-chain arrangement with other devices, such as in a customers system using the device. Additional embodiments are also provided and described in the disclosure.
Abstract:
Today many instances of IEEE 1149.1 Tap domains are included in integrated circuits (ICs). While all TAP domains may be serially connected on a scan path that is accessible external to the IC, it is generally preferred to have selectivity on which Tap domain or Tap domains are accessed. Therefore Tap domain selection circuitry may be included in ICs and placed in the scan path along with the Tap domains. Ideally, the Tap domain selection circuitry should only be present in the scan path when it is necessary to modify which Tap domains are selected in the scan path. The present disclosure describes a novel method and apparatus which allows the Tap domain selection circuitry to be removed from the scan path after it has been used to select Tap domains and to be replaced back into the scan path when it is necessary to select different Tap domains.
Abstract:
An integrated circuit can have plural core circuits, each having a test access port that is defined in IEEE standard 1149.1. Access to and control of these ports is though a test linking module. The test access ports on an integrated circuit can be arranged in a hierarchy with one test linking module controlling access to plural secondary test linking modules and test access ports. Each secondary test linking module in turn can also control access to tertiary test linking modules and test access ports. The test linking modules can also be used for emulation.