Abstract:
A gas turbine engine according to an example of the present disclosure includes, among other things, a fan section, and a compressor section including at least a first compressor section and a second compressor section. A power ratio is provided by the combination of the first compressor section and the second compressor section. A method of design a gas turbine engine is also disclosed.
Abstract:
A turbofan engine includes a geared architecture for driving a fan about an axis. The geared architecture includes a sun gear rotatable about an axis, a plurality of planet gears driven by the sun gear and a ring gear circumscribing the plurality of planet gears. A carrier supports the plurality of planet gears. The geared architecture includes a power transfer parameter (PTP) defined as power transferred through the geared architecture divided by gear volume multiplied by a gear reduction ratio and is between about 430 and 645.
Abstract:
A gas turbine engine includes a nacelle defining a centerline axis and an annular splitter radially inward from the nacelle. A spinner is radially inward of the nacelle forward of a compressor section. A fan blade extends from a fan blade platform. A distance X is the axial distance from a first point to a second point, wherein the first point is defined on a leading edge of the annular splitter and the second point is defined on a leading edge of the fan blade where the fan blade meets the fan blade platform. A distance H is the radial distance from the first point to the second point. The relative position of the first point and the second point is governed by the ratio of X/H≧1.5 for reducing foreign object debris (FOD) intake into the compressor section.
Abstract:
A gas turbine engine comprises a fan includes a plurality of fan blades rotatable about an axis. A compressor section includes at least a first compressor section and a second compressor section, wherein components of the second compressor section are configured to operate at an average exit temperature that is between about 1000° F. and about 1500° F. A combustor is in fluid communication with the compressor section. A turbine section is in fluid communication with the combustor. A geared architecture is driven by the turbine section for rotating the fan about the axis.
Abstract:
A gas turbine engine including a core nacelle defined about an engine axis. A fan nacelle is mounted at least partially around the core nacelle to define a fan bypass airflow path for a fan bypass airflow. A gear train is defined along an engine axis. The gear train defines a gear reduction ratio of greater than or equal to about 2.3. A spool along the engine axis drives the gear train. The spool includes a downstream turbine having six or fewer stages. A fan is driven through the gear train by the downstream turbine. A pressure ratio across the fan is less than about 1.45. A fan variable area nozzle is axially movable relative to the fan nacelle to vary a fan nozzle exit area and adjust a pressure ratio of the fan bypass airflow during engine operation.
Abstract:
A gas-circulation system for conditioning a disk of an aircraft may comprise a first takeoff port configured to extract a combusted gas and a second takeoff port configured to extract an uncombusted gas. A first valve may comprise an inlet in fluid communication with the first and second takeoff ports and an outlet of the first valve in fluid communication with the disk.
Abstract:
An airfoil includes, among other possible things, a main body extending between a leading edge and a trailing edge. Channels are formed into the main body, with a plurality of ribs extending intermediate the channels. A cover skin is attached to the main body. The cover skin is welded to the main body with a weld at outer edges. An adhesive is placed between inner surfaces of the cover skin and the main body. The adhesive is deposited inwardly of the outer edges of the cover skin. A method of constructing an airfoil is also disclosed as is a gas turbine engine.
Abstract:
A fan section comprises a fan rotor having a plurality of blades and a spinner positioned forwardly of the fan rotor. The fan rotor is driven through a gear reduction. The spinner includes a spinner body having an outer surface with a forward end and a rearward end. A conical line extends between the forward end to the rear end. A first radius is measured from a centerline of the spinner at substantially 0.25 of a length of the spinner to the conical line. A second radius is also measured at substantially 0.25 of the length and extends outwardly to the outer surface of the spinner. A ratio of the second radius to the first radius is less than or equal to about 2.0. A gas turbine engine is also disclosed.
Abstract:
A geared turbofan engine having a bypass ratio of at least six (6) includes a nacelle that encloses a fan assembly and at least part of an engine case that houses an engine core. The fan assembly is disposed fore of the engine case. The nacelle and engine case defining an annular fan duct for air flow that passes through the fan but that bypasses the engine core. The nacelle includes a fore end and an aft end that defines a fan nozzle with the engine case. The engine case includes an inlet and an outlet. The inlet is connected to a duct that extends within the engine case to the outlet. The duct accommodates an air-oil heat exchanger between the inlet and outlet of the duct, which may be used for the gearbox dedicated to reducing the speed of the fan as compared to the low pressure turbine.
Abstract:
A turbine engine has a fan shaft. At least one tapered bearing is mounted on the fan shaft. The fan shaft includes at least one passage extending in a direction having at least a radial component, and adjacent the at least one tapered bearing. A fan is mounted for rotation on the tapered bearing. An epicyclic gear train is coupled to drive the fan. The epicyclic gear train includes a carrier supporting intermediate gears that mesh with a sun gear. A ring gear surrounds and meshes with the intermediate gears. Each of the intermediate gears are supported on a respective journal bearing. The epicyclic gear train defines a gear reduction ratio of greater than or equal to about 2.3. A turbine section is coupled to drive the fan through the epicyclic gear train. The turbine section has a fan drive turbine that includes a pressure ratio that is greater than about 5. The fan includes a pressure ratio that is less than about 1.45, and the fan has a bypass ratio of greater than about ten (10).