Abstract:
A vehicle door cinching apparatus for assisting the final closing motion of a sliding vehicle door includes an electromagnet, a ferrous metal plate, a cinch drive and a controller. The electromagnet mounts on either an outer periphery of a vehicle sliding door or an inner periphery of a vehicle sliding door frame that's shaped to receive the sliding door as the door moves along a final inward cinching portion of a door path to a final closed position within the door frame. The plate is supported on the other of the outer periphery of the door and the inner periphery of the door frame in a position where the plate can magnetically engage the electromagnet when the door is disposed along the final cinching portion of the door path. Whichever of the plate and electromagnet is supported on the inner periphery of the door frame is also supported for lateral movement in a direction generally parallel to the cinching portion of the door path. According to the method, the cinch drive moves whichever of the electromagnet and plate is supported on the inner periphery of the door frame to drive the door along the final cinching portion of the door path and into the final closed position. The controller de-energizes the electromagnet and releases the door from the cinching apparatus once the door has reached its final closed position.
Abstract:
An operator (10, 210) for moving in upward and downward directions a sectional door (D) having a counterbalancing system (30) including a drive tube (31) interconnected with the door comprising, a reversible motor (41), a drive gear (52) selectively driven in two directions by the motor, a driven gear (54) freely rotatably mounted on the drive tube and engaging the drive gear, a slide guide (56) non-rotatably mounted on the drive tube, a disconnect (70) mounted on the slide guide and selectively movable between a first position rotatably connecting the driven gear and the slide guide and a second position disconnecting the drive gear and the slide guide, and an actuator (80) for selectively moving the disconnect between the first position and the second position.
Abstract:
A power window apparatus includes an operation switch for causing a window glass to move when operated. The operation switch generates an input signal having a ground level when operated. A microcomputer drives a motor in response to an input signal. A down terminal and an up terminal are used to connect the operation switch and the microcomputer to each other. A ground terminal is used to connect the operation switch and ground to each other. A battery terminal is used to connect the operation switch and a power supply to each other. When operated, the operation switch connects the down terminal or the up terminal to the ground terminal and generates an input signal having the ground level in the down terminal or the up terminal. When not operated, the operation switch connects the down terminal and the up terminal to the power supply terminal.
Abstract:
A door is moved in an opening direction at a first speed until the door reaches a decelerating area. A moving speed of the door in the opening direction is decelerated from the first speed to a second speed being lower than the first speed while the door has been moved in the decelerating area. The movement of the door is stopped when the door is moved beyond the decelerating area, the door comes in contact with an obstacle, and the moving speed of the door becomes lower than a predetermined speed corresponding to an open position of the door by a predetermined threshold value.
Abstract:
A side sliding door device is provided for a vehicle that opens and closes an entrance on a side of the vehicle by a sliding door movably supported on a horizontal door rail. The sliding door device includes an automatic locking mechanism that is interlocked with a closing operation of the sliding door, and locks the sliding door in a closed state, and a manual locking mechanism that locks the sliding door in the closed state by a manual operation. The automatic locking mechanism and the manual locking mechanism are secured on a common base plate on a vehicle body and integrated into one unit, so that the manual locking mechanism prevents an unlocking operation of the automatic locking mechanism in a locked state and holds the sliding door in the locked state.
Abstract:
A sectional door having a door frame, a door panel comprising sections coupled to another in articulated manner, a weight equalization device coupled to the door panel, and an electrical door drive for opening and closing movements of said door panel. The uppermost section in the closed position of the door panel, is guided on running rails as the header section, wherein said rails extend essentially horizontally up to the door frame, and have a vertical end segment on the frame side. The other sections that follow below the header section are guided in guide rails that have a vertical segment along the door frame, a horizontal segment parallel to the running rail that holds the header section, and an arc that joins the two segments. With this device, the door drive is attached to one of the sections connected below the header section, and has at least one power take-off shaft having an impeller at the end. The driven impeller engages in the guide rail and moves the door panel.
Abstract:
The present invention relates to automatic door assemblies and swing operators therefor. One aspect of the invention provides a swing door operator that has an opening in the housing thereof for easy access to the operator motor. Another aspect of the invention provides a method for servicing a door operator. Another aspect of the invention provides a door operator with a spring force adjusting member that moves in the generally longitudinal direction of the spring structure. Another aspect of the invention provides a method for adjusting the spring force of the spring structure in a door operator. Another aspect of the invention provides a swing door operator with an adjustable stop member.
Abstract:
The invention relates to a device for automatically actuating a vehicle door (1), in particular a side door or a tailgate of the motor vehicle. Said device comprises a control device (12) and a drive (4;4null) that consists of a motor (5) with a gearing (6) connected downstream and at least one transmission element (8;20) located between the gearing (6) and the vehicle door (1). The aim of the invention is to facilitate the manual actuation of an automatically actuated vehicle door (1) that is in an open position. To achieve this, a load sensor (10) is mounted on the drive (4). When a predetermined load on the open vehicle door (1) has been reached, said sensor generates a control signal, which is fed to the control device (12) for activating the motor (5), or for decoupling a coupling (18) that is located between the gearing (6) and the transmission element (8;20), the load on the open vehicle door (1) being produced e.g. by a corresponding manual pressure on said vehicle door (1).
Abstract:
Shutter (4) with articulated elements (6) guided by two rails (8) having a first rectilinear part (8V) mounted in the plane that the shutter (4) is to occupy in the closed position, connected by a curved part (8C) to a second rectilinear part (8H), mounted in the plane that the shutter (4) is to occupy in the open position. This shutter (4) is equipped with an electrical drive device having: two drive tracks (10) mounted respectively along said second rectilinear part (8H) of the rails (8), a carriage (5) having a frame carried and guided by the second rectilinear part (8H) of the rails (8), there being mounted on this frame a drive shaft (24), an electric motor (22) and a transmission between the shaft (24) and the motor (22), pinions (27) or notched wheels fixed to the two ends of the shaft (24) meshing with the drive tracks (10), connection mechanisms (30, 31) between the carriage (5) and the closest shutter element (6), and a control station for controlling the running and stopping of the motor.
Abstract:
A power operating system for a vehicle liftgate includes an actuator having a gas strut and a linear electric motor mounted thereto along a common axis. By activating the linear electric motor, a slidable rotor moves along the linear stator to drive the gas spring between an extended position and a retracted position to provide remote operation of the liftgate. When power is unavailable to the linear electric motor, the liftgate may still be manually opened and closed in the conventional manner without the necessity of an override.