Abstract:
Capacitance sensing circuits and methods are provided. A dual mode capacitance sensing circuit includes a capacitance-to-voltage converter having an amplifier and an integration capacitance coupled between an output and an inverting input of the amplifier, and a switching circuit responsive to mutual mode control signals for a controlling signal supplied from a capacitive touch matrix to the capacitive to voltage converter in a mutual capacitance sensing mode and responsive to self mode control signals for controlling signals supplied from the capacitive touch matrix to the capacitance-to-voltage converter in a self capacitance sensing mode, wherein the capacitance sensing circuit is configurable for operation in the mutual capacitance sensing mode or the self capacitance sensing mode.
Abstract:
An in-cell touchscreen panel includes columns of transmit electrodes and rows of sensing electrodes, wherein each row of sensing electrodes comprises a first subset of sensing electrodes coupled to control circuitry via a first subset of receiving traces and a second subset of sensing electrodes coupled to the control circuitry via a second subset of receiving traces. To enable multi-touch functionality, the in-cell touchscreen panel operates in a scanning mode where capacitance is measured at each node where the sensing electrodes intersect the transmit electrodes. During the scanning mode, the control circuitry senses the first and second subsets of receiving traces while applying drive signals to pairs of transmit electrodes. After a drive signal has been applied to each of the transmit electrodes, each of the nodes are measured to detect a capacitance. This capacitance is indicative of a user touch on the in-cell touchscreen panel.
Abstract:
In an embodiment, an apparatus includes a determiner, converter, adapter, and modifier. The determiner is configured to generate a representation of a difference between a first frequency at which a first signal is sampled and a second frequency at which a second signal is sampled, and the converter is configured to generate a second sample of the first signal at a second time in response to the representation and a first sample of the first signal at a first time. The adapter is configured to generate a sample of a modifier signal in response to the second sample of the first signal, and the modifier is configured to generate a modified sample of the second signal in response to a sample of the second signal and the sample of the modifier signal. For example, such an apparatus may be able to reduce the magnitude of an echo signal in a system having an audio pickup (e.g., a microphone) near an audio output (e.g., a speaker).
Abstract:
An image sensor device may include a bottom interconnect layer, an image sensing IC above the bottom interconnect layer and coupled thereto, and an adhesive material on the image sensing IC. The image sensor device may include an IR filter layer above the lens layer, and an encapsulation material on the bottom interconnect layer and surrounding the image sensing IC, the lens layer, and the IR filter layer. The image sensor device may include a top contact layer above the encapsulation material and including a dielectric layer, and a contact thereon, the dielectric layer being flush with adjacent portions of the IR filter layer.
Abstract:
A PNP apparatus may include a robotic arm, and a PNP tool head carried by the robotic arm. The PNP tool head may include a body configured to apply bonding pressure to a first area of an electronic device, and a pick-up tip movable between an extended position and a retracted position relative to the body as the pick-up tip rests against a second area of the electronic device. The pick-up tip may define a vacuum passageway therethrough to couple a vacuum source to the second area of the electronic device.
Abstract:
A power transmitter includes: a first switch coupled between a first node and a reference voltage node; a second switch configured to be coupled between a power supply and the first node; a coil and a capacitor coupled in series between the first node and the reference voltage node; a first sample-and-hold (S&H) circuit having an input coupled to the first node; and a timing control circuit configured to generate a first control signal, a second control signal, and a third control signal that have a same frequency, where the first control signal is configured to turn ON and OFF the first switch alternately, the second control signal is configured to turn ON and OFF the second switch alternately, and where the third control signal determines a sampling time of the first S&H circuit and has a first pre-determined delay from a first edge of the first control signal.
Abstract:
A method for operating an electronic device, including: determining that a touchscreen is in a low frequency display (LFD) mode, determining whether a self-sensing scan was performed in a previous frame of a plurality of frames; after determining, a self-sensing scan was performed in the previous frame, determining a current duration of time corresponding to a current frame based on a previous duration of time corresponding to the previous frame, the previous frame being a frame immediately preceding the current frame; determining, whether the current duration of time is greater than the previous duration of time; and after determining that the current duration is greater than the previous duration, performing a self-sensing scan after the current duration of time, the current duration of time being measured from a beginning of the current frame, the current duration of time having a duration less than a duration of the current frame.
Abstract:
A method includes: displaying, an image on a display by sequentially displaying a plurality of frames of the image, the plurality of frames including a first frame and second frame; performing a first noise sampling scan at a plurality of frequencies at a first time location within a first frame; determining a first frequency from the plurality of frequencies with the lowest noise; performing a first mutual sensing scan at the first frequency; performing, a second noise sampling scan at the plurality of frequencies at a second time location within a second frame of the plurality of frames, the second time location being a different frame location than the first time location; determining a second frequency from the plurality of frequencies with the lowest noise, the second frequency being different from the first frequency; and performing, a second mutual sensing scan at the second frequency.
Abstract:
In an embodiment, a method includes performing a calibration of a first touch cell of a touch screen, where performing the calibration includes: receiving a first code associated with the first touch cell; receiving a second code associated with the first touch cell; determining whether there is an indication of a touch of the touch screen based on the first and second codes; generating a raw code based on the first or second codes; receiving a third code associated with the first touch cell; determining whether the third code matches the raw code; and in response to determining that there is no indication of a touch of the touch screen based on the first and second codes, and that the third code matches the raw code, updating a calibration code associated with the first touch cell based on the raw code or the third code.
Abstract:
A device includes an analog to digital converter configured to convert voltages into a digital signal by sampling the voltages at a fixed sampling time; a first multiplier configured to multiply the digital signal with in-phase coefficients, the in-phase coefficients generated to produce a demodulated in-phase signal at a demodulation signal frequency; a first adder configured accumulate the demodulated in-phase signal to output in-phase magnitude values; a second multiplier configured to multiply the digital signal with quadrature coefficients, the quadrature coefficients generated to produce a demodulated quadrature signal at the demodulation signal frequency; and a second adder configured to accumulate the demodulated quadrature signal to output quadrature magnitude values.