Abstract:
Provided are a semiconductor device and a method for compensating for a voltage drop of a bit line. The semiconductor device includes at least one monitoring bit line and at least one main memory bit line, and monitors a voltage of the at least one monitoring bit line after a precharging operation and supplies a predetermined compensation current to the at least one monitoring bit line and the at least one main memory bit line based on a monitoring result. Accordingly, it is possible to precisely compensate for a voltage drop occurring in the main memory bit line due to under precharge or leakage current, thereby preventing unnecessary compensation current from being supplied. Therefore, it is possible to stably perform a read operation of the semiconductor device.
Abstract:
The present invention relates to novel aminopeptidase derived from Bacillus licheniformis, a gene encoding the aminopeptidase, an expression vector containing the gene, a cell transformant transfected with the expression vector and a process for preparing a natural type protein using thereof. More particularly, the present invention relates to a gene encoding aminopeptidase which is cloned and manufactured using the recombinant DNA technique, an expression vector containing the gene, a cell transformant transfected with the expression vector and a recombinant aminopeptidase which is necessary to produce recombinant human growth hormone in a natural type protein and can be expressed in a high yield more stably and advantageously, compared with conventional methods for the purification.
Abstract:
A phase locked loop (PLL) integrated circuit includes a voltage-controlled oscillator (VCO) configured to generate a clock signal at an output terminal thereof. The VCO is further configured to improve the frequency response of the PLL by varying a capacitance of the output terminal concurrently with changing a frequency of the clock signal. The VCO may include a control signal generator, which is configured to generate a plurality of control signals in response to UP and DOWN pumping signals, and an oscillator, which is configured to generate the clock signal in response to the plurality of control signals. The oscillator may be a ring oscillator, which is responsive to the plurality of control signals.
Abstract:
A memory device in accordance with embodiments of the present invention includes a reference cell array and a plurality of banks. Each of the banks includes memory cells. A plurality of current copier circuits corresponds to the banks, respectively. Each of the current copier circuits copies a reference current flowing through a reference cell array to generate a reference voltage. A plurality of sense blocks correspond to the banks, respectively. Each of the sense blocks includes a plurality of sense amplifiers for sensing data from a corresponding bank in response to the reference voltage from the corresponding current copier circuit. Memory cell lay-out area is reduced, and sense speed is increased.