Abstract:
Catalysts that are resistant to high-temperature sintering and methods for preparing such catalysts that are resistant to sintering at high temperatures are provided. The catalysts include a metal nanoparticle bound to a metal oxide support, where the metal nanoparticle and support are coated with a porous metal oxide coating layer. The catalyst is prepared by contacting a metal nanoparticle bound to a metal oxide support with a solution of metal salts, drying the solution of metal salts, and calcining the metal salts to generate a porous metal oxide coating on the metal nanoparticle and metal oxide support.
Abstract:
An electroactive material for use in an electrochemical cell, like a lithium ion battery, is provided. The electroactive material comprises a multifunctional hybrid protective coating system formed over an electroactive material. The coating system includes a first oxide-based coating disposed on one or more surfaces of the electroactive material, followed by a second coating deposited via a non-aqueous process. The second coating may be a fluoride-based, nitride-based, or carbide-based coating. The first and second coatings may be applied by atomic layer deposition (ALD) to form conformal ultrathin layers over the electroactive materials. Such a multifunctional hybrid protective coating system can suppress formation of gases within the electrochemical cell and also minimize formation of solid electrolyte interface (SEI) layers on the electrode to improve battery performance. Methods for making such materials and using such materials in electrochemical cells are likewise provided.
Abstract:
A lithium-ion conducting, solid electrolyte is deposited on a thin, flexible, porous alumina membrane which is placed between co-extensive facing side surfaces of a porous, lithium-accepting, negative electrode and a positive electrode formed of a porous layer of particles of a compound of lithium, a transition metal element, and optionally, another metal element. A liquid electrolyte formed, for example, of LiPF6 dissolved in an organic solvent, infiltrates the electrode materials of the two porous electrodes for transport of lithium ions during cell operation. But the solid electrolyte permits the passage of only lithium ions, and the negative electrode is protected from damage by transition metal ions or other chemical species produced in the positive electrode of the lithium-ion cell.
Abstract:
In an example of a method for making a hollow carbon material, a carbon black particle is obtained. The carbon black particle has a concentric crystallite structure with an at least partially amorphous carbon core and a graphitic carbon shell surrounding the at least partially amorphous carbon core. The carbon black particle is exposed to any of a heat treatment, a chemical treatment, or an electrochemical treatment which removes the at least partially amorphous carbon core to form the hollow carbon material.
Abstract:
An electrochemical cell is formed. The cell includes a non-lithium negative electrode in contact with a lithium ion permeable negative electrode current collector, and a positive electrode disposed in contact with a lithium ion permeable positive electrode current collector. The non-lithium negative electrode and the positive electrode are lithium ion permeable. The cell also has a lithium source electrode including lithium ions. A respective microporous polymer separator is disposed between the lithium source electrode and each of the negative and positive electrodes; or a first separator is disposed between the lithium source electrode and one of the negative and positive electrodes, and a second separator is disposed between the negative and positive electrodes. An electrolyte is introduced into the electrochemical cell. A voltage potential is applied across the electrochemical cell to pre-lithiate any of the non-lithium negative electrode and positive electrode with lithium ions from the lithium source electrode.
Abstract:
A sulfur based active material has a core-shell structure including a hollow core and a porous carbon shell surrounding the hollow core. Sulfur is present in a portion of the hollow core. A polymer shell coating is formed on the porous carbon shell. The polymer shell coating includes nitrogen atoms that bond to carbon atoms of the porous carbon shell so that the porous carbon shell is a nitrogen-confused porous carbon shell.