Abstract:
A method and apparatus for subcarrier selection for systems is described. In one embodiment, a method for subcarrier selection for a system employing orthogonal frequency division multiple access (OFDMA) comprises partitioning subcarriers into groups of at least one cluster of subcarriers, receiving an indication of a selection by the subscriber of one or more groups in the groups, and allocating at least one cluster in the one or more groups of clusters selected by the subcarrier for use in communication with the subscriber.
Abstract:
A method for subcarrier allocation and loading for a multi-carrier, multi-subscriber system is described. At least one cluster in a first and second set of clusters of subcarriers is associated for use in communication with a first and second subscriber, respectively. Then, for each cluster associated for use in communication with the first subscriber and the second subscriber, usage of that cluster is multiplexed between the first subscriber during a first time division and the second subscriber during a second time division.
Abstract:
A method and apparatus for subcarrier selection for systems is described. In one embodiment, a method for subcarrier selection for a system employing orthogonal frequency division multiple access (OFDMA) comprises partitioning subcarriers into groups of at least one cluster of subcarriers, receiving an indication of a selection by the subscriber of one or more groups in the groups, and allocating at least one cluster in the one or more groups of clusters selected by the subcarrier for use in communication with the subscriber.
Abstract:
Embodiments of computer-implemented methods, systems, computing devices, and computer-readable media are described herein for assigning transmission power to one or more components carriers in an uplink transmission utilizing carrier aggregation. In one embodiment, power is assigned to a component carrier based on the priority level of the component carrier. In another embodiment, power is assigned based on absolute priority order. In yet another embodiment, power is assigned based on relative priority order.
Abstract:
Apparatuses, methods, and computer readable media for signaling high efficiency short training field are disclosed. A high-efficiency wireless local-area network (HEW) station is disclosed. The HEW station may comprise circuitry configured to: receive a trigger frame comprising an allocation of a resource block for the HEW station, and transmit a high efficiency short training field (HE-STF) with a same bandwidth as a subsequent data portion, wherein the transmit is to be in accordance with orthogonal frequency division multiple access (OFDMA) and wherein the transmit is within the resource block. A subcarrier allocation for the HE-STF may matche a subcarrier allocation for the subsequent data portion. The HE-STF and the subsequent data portion may be transmitted with a same power. A total power of active subcarriers of the HE-STF may be equal to or proportional to a second total of data subcarriers and pilot subcarriers of the subsequent data portion.
Abstract:
Embodiments of wireless adaptive control message apparatus, systems, and methods are described generally herein. Other embodiments may be described and claimed.
Abstract:
The present disclosure relates to computer-implemented systems and methods for facilitating simultaneous poll responses. A method may include assigning respective subsets of subcarrier frequencies to a plurality of user devices for communication over a wireless channel. The method may also include transmitting, simultaneously, a channel status request poll to the user devices. Additionally, the method may include determining, based at least in part on a first channel status response received via a first subset of subcarrier frequencies over the wireless channel, that the first channel status response is received from the first user device. Similarly, the method may also include determining a second channel status response is received from a second user device. Furthermore, the method may include determining, based at least in part on the first channel status response and the second channel status response, to schedule simultaneous data communication for the first device and the second device.
Abstract:
Embodiments of the present disclosure are directed towards devices and methods for discovering and waking up dormant access nodes in cellular networks. In one embodiment, the dormant access nodes passively participate in a device-to-device discovery process to identify potential user equipment nearby. Upon identifying a potential user equipment, the dormant access node may wake itself up and inform a serving access node that that is able to service the user equipment. In another embodiment, dormant access nodes may transmit a discovery message periodically. Upon receiving the discovery message a user equipment may report the availability of the dormant access node to its serving access node.
Abstract:
An energy aware framework for computation and communication devices (CCDs) is disclosed. CCDs may support applications, which may participate in energy aware optimization. Such applications may be designed to support execution modes, which may be associated with different computation and communication demands or requirements. An optimization block may collect computation requirement values (CRVM), communication demand values (CDVM), and such other values of each execution mode to perform a specific task(s). The optimization block may collect computation energy cost information (CECIM) and multi-radio communication energy cost information (MCECIM) for each execution mode. Also, the optimization block may collect the workload values of a cloud-side processing device. The optimization block may determine power estimation values (PEV), based on the energy cost values (CECIM), (MCECIM), CRVM, and CDVM. The optimization block may then determine the execution mode or the apparatus best suited to perform the tasks.
Abstract:
A system and method for wireless wide area network (WWAN) assisted proximity wireless local area network (WLAN) peer-to-peer (P2P) connection and offloading is disclosed. The method includes the operation of identifying a first wireless device and a second wireless device between which a WLAN P2P connection is desired. Each wireless device can have a WWAN radio and a WLAN radio. WLAN information can be sent for at least one of the first and second wireless devices via the WWAN to a P2P configuration server. A WLAN P2P configuration can be received from the P2P configuration server at the first and second wireless devices via the WWAN for WLAN P2P communication between the first and second wireless devices. A WLAN P2P connection can be set up between the first and second wireless devices using the WLAN P2P configuration. The first and the second wireless devices can communicate using the WLAN P2P connection.