摘要:
Embodiments of the present disclosure are directed towards devices and methods for discovering and waking up dormant access nodes in cellular networks. In one embodiment, the dormant access nodes passively participate in a device-to-device discovery process to identify potential user equipment nearby. Upon identifying a potential user equipment, the dormant access node may wake itself up and inform a serving access node that that is able to service the user equipment. In another embodiment, dormant access nodes may transmit a discovery message periodically. Upon receiving the discovery message a user equipment may report the availability of the dormant access node to its serving access node.
摘要:
Embodiments of computer-implemented methods, systems, computing devices, and computer-readable media are described herein for monitoring, by a mobile proxy associated with a control system of a cloud radio access network (“C-RAN”), application layer data traffic between the control system and a wireless communication device. In various embodiments, the mobile proxy may, based on the monitoring, facilitate alteration of data plane or control plane processing by the wireless communication device or a remote radio head (“RRH”) associated with the C-RAN.
摘要:
Embodiments of computer-implemented methods, systems, computing devices, and computer-readable media are described herein for monitoring, by a mobile proxy associated with a control system of a cloud radio access network (“C-RAN”), application layer data traffic between the control system and a wireless communication device. In various embodiments, the mobile proxy may, based on the monitoring, facilitate alteration of data plane or control plane processing by the wireless communication device or a remote radio head (“RRH”) associated with the C-RAN.
摘要:
Technology for forming carrier aggregation timing advance groups in a heterogeneous network (HetNet) is disclosed. One method comprises assigning at least a first component carrier cell to one of a first timing advance group and a second timing advance group. At least a second component carrier cell is assigned to one of the first timing advance group and the second timing advance group. A separate timing advance index value is selected for each of the first and second timing advance groups. The timing advance index value is used to refer to the timing advance group in signaling in the HetNet.
摘要:
Technology for forming carrier aggregation timing advance groups in a heterogeneous network (HetNet) is disclosed. One method comprises assigning at least a first component carrier cell to one of a first timing advance group and a second timing advance group. At least a second component carrier cell is assigned to one of the first timing advance group and the second timing advance group. A separate timing advance index value is selected for each of the first and second timing advance groups. The timing advance index value is used to refer to the timing advance group in signaling in the HetNet.
摘要:
A user equipment (UE) is configured to receive a maximum probability of accessing a wireless local area network (WLAN) for communication. The maximum probability is received via a 3rd Generation Partnership Project (3GPP) communication link with an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Node B (eNB). The UE is further configured to determine that there is a queued transmission for the UE and, in response to determining that there is a queued transmission, to determine whether the UE is authorized to access to the WLAN using a probability less than or equal to the maximum probability. The UE is further configured to delay contention for access to the WLAN for at least a pre-backoff duration in response to determining that the UE is not authorized.
摘要:
A user equipment (UE) includes a request receipt component, an interference component, and a grant/deny component. The request receipt component is configured to receive a first signal indicating a request to transmit to the UE from a first transmitting UE and to receive one or more additional signals indicating that one or more additional transmitting UEs are requesting to transmit to corresponding target UEs. The interference component identifies, based on a received power of the first signal and the one or more additional signals, one or more potentially incompatible UEs. The incompatible UEs may include at least one of the one or more additional transmitting UEs. The grant/deny component is configured to send a signal indicating a block on transmission by the one or more incompatible UEs.
摘要:
Systems, methods, and devices for device-to-device (D2D) distributed scheduling are disclosed herein. User equipment (UE) is configured to measure a received power level for a reference signal received from a target UE and measure received power levels for reference signals received from one or more non-target UEs. The UE is configured to generate a resource usage map for the target UE and the one or more non-target UEs. The UE is configured to determine a priority, with respect to the target UE, for each resource element group based on the resource usage map and an anticipated signal-to-interference ratio (SIR). The UE is configured to transmit data to the target UE during one or more resource element groups with the highest priorities for the target UE.
摘要:
Embodiments described herein relate generally to a user equipment (“UE”) that is to transmit and receive signals associated with synchronization. The UE may be receive signals associated with synchronization from a plurality of synchronization sources, such as an evolved Node B (“eNB”), a global navigation satellite system (“GNSS”), or another UE. The UE may synchronize to a signal received from a synchronization source based on a priority associated with that synchronization source and/or signal. However, if the UE does not receive any signals associated with synchronization, the UE may generate and transmit a signal that indicates a request for synchronization.
摘要:
A technique includes, in mobile station that is part of a coordinated multi-point reception transmission/reception (CoMP) system, receiving a message from a base station identifying at least one parameter specific to the mobile station or specific to a reception set used by the mobile station; and regulating power in communications by the mobile station based at least in part on the parameter(s).