Abstract:
The present invention relates to a wireless access system supporting a full duplex radio (FDR) transmission environment. A resource allocation method of a base station in a wireless access system that supports a FDR, according to one embodiment of the present invention, comprises the steps of: transmitting a first frame setting for a configuration of an uplink subframe and a downlink subframe to a terminal which is set by a terminal-specific TDD; receiving, from the terminal, response information including traffic information of the terminal and/or frame setting information preferred by the terminal; and transmitting a second frame setting which has adjusted the ratios of the uplink subframe and the downlink subframe on the basis of the response information, wherein the second frame setting is capable of being set by shifting the first frame setting on the basis of the number of FDR interference terminals which simultaneously transmit an uplink.
Abstract:
The present invention provides a method for transceiving a broadcast channel signal and/or a control channel signal in a wireless access system and devices for supporting the same. The method for receiving a physical broadcast channel (PBCH) signal in a wireless access system, according to one embodiment of the present invention, comprises steps of: receiving synchronization signals; obtaining a physical cell identifier (PCID) on the basis of the synchronization signals; calculating a subcarrier index for indicating a PBCH area on the basis of the PCID; detecting the PBCH area by carrying out blind-decoding from a subcarrier, in which a subcarrier index is shown, in the subframe; and receiving a PBCH signal which is broadcasted through the PBCH area.
Abstract:
In this disclosure, methods for pre-compensation of the phase shifting error, and apparatuses for the same are disclosed. In one example, a device performs precoding of a digital signal, while acquiring information on an error caused by a phase shifting of the precoding. Then, the device performs phase compensation on the digital signal based on the acquired information. This phase compensated-digital signal is converted to an analogue signal, and is transmitted to a receiver.
Abstract:
According to one embodiment of the present specification, provided is a method for setting an interface between a radio access device for providing services to user equipment (UE) by using cellular-based radio access technology (RAT) and/or wireless LAN-based RAT, and a mobility management entity (MME). The method can comprises the steps of: transmitting, by the radio access device, a request message to the MME; and receiving a response message from the MME.
Abstract:
A wireless communication system is disclosed. Disclosed herein are methods for transmitting a physical uplink control channel (PUCCH) signal in a wireless communication system, which includes setting transmit power for the PUCCH signal, and an apparatus thereof. If the PUCCH signal is transmitted on a subframe configured for a scheduling request (SR), the PUCCH signal includes one or more hybrid automatic repeat request acknowledgement (HARQ-ACK) bits and an SR bit. When determining the transmit power for the PUCCH, the SR bit is selectively considered depending on whether or not a transport block for an uplink shared channel (UL-SCH) is present in the subframe.
Abstract:
A method and apparatus for performing effective feedback in a wireless communication system supporting multiple antennas. A method for transmitting CSI of downlink transmission via uplink in a wireless communication system includes transmitting a joint-coded rank indicator (RI) and a first wideband (WB) precoding matrix indicator (PMI) at a first subframe, and transmitting a wideband channel quality indicator (WB CQI) and a second WB PMI at a second subframe. A user equipment (UE) preferred precoding matrix is indicated by a combination of the first PMI and the second PMI. If the RI is Rank-1 or Rank-2, the first PMI indicates one of subsets each having 8 indexes from among 16 indexes of the first PMI of a precoding codebook.
Abstract:
A method for receiving a signal from a base station by a user equipment, using beamforming based on a massive antenna array of the base station in a wireless communication system is disclosed. The method includes configuring an effective antenna array in the massive antenna array, receiving a pilot signal corresponding to the effective antenna array from the base station, reporting channel state information for beamforming to the base station, using the pilot signal, and receiving a user equipment-specifically beamformed signal through the effective antenna array from the base station, wherein the effective antenna array is defined as one or more horizontal antenna ports and one or more vertical antenna ports.
Abstract:
A user equipment (UE) for cancelling a self-interference (SI) signal is disclosed. The UE includes a rat-race coupler, a plurality of transceiving antennas capable of transmitting and receiving signals, a receive antenna, a transmission (Tx) chain connected to an input port when the rat-race coupler uses one port as the input port, and a reception (Rx) chain connected to the receive antenna and an isolated port when the rat-race coupler uses the one port as the input port.
Abstract:
A method for scanning for a base station (BS) of a second radio access technology (RAT) by a user equipment (UE) connected to a first RAT in a multi-RAT environment includes receiving information about one or more BSs of the second RAT adjacent to the UE, from an interworking entity (IWE) of the first RAT which manages interworking between the first RAT and the second RAT, and transmitting an awake request message to a specific BS among the BSs of the second RAT in a listening interval of the specific BS to which the UE desires to access, if a status of the specific BS is an idle mode, wherein listening interval information is included in the received information about the BSs of the second RAT.
Abstract:
Grouping based reference signal transmission scheme for massive MIMO is disclosed. UEs are grouped and each UE group receives information on a sequence used for the uplink reference signal from a base station. The information is determined to assign orthogonal sequences to UEs within a UE group considering at least one or more of a number of orthogonal sequences, a number of the UEs within the UE group, amount of information to be transmitted, channel condition between the base station and each UE, and a number of sequences assigned to each UE of the UEs.