Abstract:
A filter for filtering fluids, in particular gas in petrochemical plants, has: a tubular cartridge which extends along a first axis, is designed to filter a fluid, and has a first and second annular end; a casing, which is connectable to a conduit of a petrochemical plant, houses the tubular cartridge, and has a first and second end support; and an axial compensating ring located between the tubular cartridge and the first or second end support.
Abstract:
A method of temporarily supporting a soil mass susceptible to slide at a scarp slope bounding the soil mass includes advancing a supporting wall in an advancing direction along the scarp slope; and, in addition to the movement in the advancing direction, also moving a surface portion, in direct contact with the soil mass, of the supporting wall, so as to minimize friction between the soil mass and the supporting wall.
Abstract:
A method of underground laying a continuous elongated member in a bed of a body of water, wherein the continuous elongated member lies on the bed of the body of water along a given path; the method including the steps of: fragmenting a soil mass in the bed along the given path and under the continuous elongated member, so as to form in the bed two scarp slopes bounding the fragmented soil mass by two soil masses susceptible to slide; advancing two supporting walls along the given path in an advancing direction, along the respective two scarp slopes, and transferring the fragmented soil mass between the two supporting walls, so as to promote sinking of the continuous elongated member between the two supporting walls.
Abstract:
A pipeline A/R method using a rope connected to the pipeline, the method including winding/unwinding the rope utilizing a hauling machine to exert pull on the rope; adapting a crawler pipeline tensioning device to grip the rope in the crawler tensioning device; and exerting additional pull on a portion of rope between the crawler tensioning device and the pipeline.
Abstract:
A method of abandoning or recovering an underwater pipeline from a laying vessel includes the steps of looping a first rope about a pulley connected to the free end of the pipeline; end-locking the first rope, on one side, to the laying vessel; and winding or unwinding the first rope, on the other side, by means of a first winch located on the laying vessel.
Abstract:
A laying vessel configured to lay pipelines on the bed of a body of water has a floating structure; a laying tower hinged to the floating structure and configured to assemble and lay a pipeline on the bed of the body of water; and an A&R system configured to abandon and recover the pipeline; and wherein the A&R system has a haul line; and a sheave assembly configured to guide the haul line, and which is fitted to the floating structure to move between a work position at the laying tower, and a position away from the laying tower.
Abstract:
A traction method for an operating line, in particular a mooring line, of a floating production unit includes the steps of: attaching an end chain portion of the operating line to a socket of a main cable running through a sheave at a work station; reeling in the main cable, using a winch, to bring the socket of the main cable up to the sheave; locking the operating line with a chain stopper; slackening the main cable and moving the sheave closer to the chain stopper to reduce pull on the main cable; reeling in the main cable to run the socket of the main cable through the sheave; once the socket of the main cable has run through the sheave, releasing the operating line from the chain stopper, and reeling in, by means of the winch, the main cable and the operating line connected to it, to set the operating line to a given tension.
Abstract:
Procedure for the low-risk and zero-emission transportation of sulphur from solid sulphur deposits, in blocks of large dimensions, characterized in that it comprises the formation of blocks of sulphur, having suitable dimensions for being moved, by means of water cut techniques and the wrapping of the blocks obtained in polyethylene sheets.
Abstract:
A monohull vessel for laying a pipeline includes tensioners 13 disposed along a Pipelaying path P. The pipelaying path P includes an upstream portion that is substantially horizontal and at least 10 m above the center of rolling R of the vessel and, towards a stern end of the vessel hull, a downstream portion that is downwardly inclined and, in use, enters the water at a location inboard of the stern end of the vessel hull 1.
Abstract:
A fluidified inert material spreading device configured to bury a pipeline in a body of water is configured to travel in the body of water in a travelling direction along and over the pipeline, and has a hull, which extends along a longitudinal axis, houses at least one expansion chamber for fluidified inert material, is connected to at least one feed port to feed the fluidified inert material to the expansion chamber, and has a quantity or number of outlet ports configured to release the fluidified inert material from the expansion chamber, close to the pipeline, and which as a whole define a flow cross section greater than the flow cross section of the feed port.