Abstract:
A high-efficiency magnetic inductor rotary machine in which eddy current loss is reduced even if driven at super-high-speed rotation, and a fluid transfer apparatus that uses the same. In the magnetic inductor rotary machines, first and second stator cores are disposed coaxially such that circumferential positions of teeth are aligned, and first and second rotor cores are fixed coaxially to a rotating shaft such that salient poles are offset by a pitch of half a salient pole circumferentially, and are disposed on an inner peripheral side of the first and second stator cores. A salient pole width of the salient poles of the first and second rotor cores is configured so as to be greater than an opening width of slots of a stator.
Abstract:
A transverse flux machine (TFM) includes a stator assembly that provides a plurality of U-shaped magnetic circuits placed circumferentially around a rotor assembly. The plurality of U-shaped magnetic circuits being comprised of a first stator segment, a second stator segment, and a plurality of stator yokes. The first stator segment and the second stator segment each have a plurality of poles spaced around a first circumference and a plurality of slots spaced around a second circumference opposite each of the plurality of poles. The plurality of stator yokes each have a first end sized to fit within one of the slots associated with the first stator segment and a second end sized to fit in one of the slots associated with the second stator segment. Positioning of the first and second ends of the stator yokes within the slots of the first and second stator segments, respectively, results in the creation of the plurality of U-shaped magnetic circuits, each magnetic circuit defined by one of the plurality of poles associated with the first stator segment, one of the yokes, and one of the plurality of poles associated with the second stator segment.
Abstract:
[Problem] The invention provides a unidirectionally-energized brushless DC motor including an AC voltage output winding, and the brushless DC motor simultaneously exerts a motor function of being able to continuously obtain a constant torque and a power generation function of being able to obtain a continuous electromotive force.[Solving Means] The brushless DC motor includes a disk 5 that is attached to a frame 3, a plurality of plate-like permanent magnets 6 that are disposed on the disk 5 at equal intervals around the disk 5, magnetic cores 70(A) that are fixed to the frame 3 according to the plurality of permanent magnets 6, windings 71(A) each of which is wound around the magnetic core 70(A) and to which DC power is supplied, a predetermined number of magnetic cores 70(B) that are fixed to the frame 3, and windings 71(B) each of which is wound around the magnetic core 70(B) and connected to a power consumption device. The permanent magnets 6 are located such that an angle formed by a straight line passing through the center of the disk 5 and the center of the permanent magnet 6 and a normal line in the center of a magnetic pole plane of the permanent magnet 6 ranges from 0° to 60°.
Abstract:
A motor having a rotor in which a rotor magnet is fixed on the outer peripheral surface of a rotor body. The motor is configured so that the support shaft portion is formed of a material having a self-lubricating property, and a first sliding surface of the support shaft portion is supported rotatably. Also, the motor is configured so as to have a metallic motor casing, a rotor provided in the motor casing to drive a motor shaft projecting from the motor casing through a shaft hole in an end wall portion, a stator provided around the rotor in the motor casing to rotationally drive the rotor, a cover member provided to close the other end opening of the motor casing, and a connector body integrally formed of a resin so as to seal the other end opening of the motor casing from the outside of the cover member.
Abstract:
A mover includes a permanent magnet array having a plurality of permanent magnets that are magnetized in a direction perpendicular to a motion direction of the mover such that magnetic poles having different polarities alternately appear on magnetic pole surfaces of the plurality of permanent magnets in the motion direction. A stator includes first and second magnetic pole portion arrays and three excitation windings. Each of the magnetic pole portion arrays include a plurality of plate-like magnetic pole portions disposed on both sides of the permanent magnet array in the perpendicular direction. Each of the excitation windings is hollow-structured whereby two magnetic pole portions included in the first magnetic pole portion array and two magnetic pole portions included in the second magnetic pole portion array are located in an internal space of the coil and are excited by the corresponding one of the excitation windings.
Abstract:
A rotor of a synchronous motor includes a rotating shaft, a plurality of segments, a plurality of permanent magnets, and a field coil. The segments are located radially outward of the rotating shaft and arranged in the circumferential direction of the rotating shaft at a predetermined pitch with spaces formed therebetween. Each of the segments has a recess making up a magnetic reluctance portion and an opposite pair of ends making up salient-pole portions. Each of the permanent magnets is disposed in one the spaces between the segments with a predetermined orientation of its N and S poles. The field coil is wound around the segments to extend in the circumferential direction of the rotating shaft through the recesses of the segments. The field coil creates, when energized with DC current, magnetic flux which magnetizes the pair of ends of each of the segments in opposite directions.
Abstract:
A motor including an outside rotor having a rotor disc with plural magnets alternating polarities flush mounted in the disc, an inside stator assembly with a ring of pole pieces forming a channel to house a transversely wound stator windings, and a controller coupled with feedback electronics for monitoring a timing, speed and direction and coupling a signal to a processing unit for adjusting the drive electronics driving the phase windings. A u-shaped gap above the channel to receive the rotor disc and focus the captured magnetic flux in the pole pieces toward the magnets. In an embodiment the molded magnetic flux channel pole pieces of the inside stator are sets of molded magnetic flux channel pole pieces, each set forming a channel and corresponding to one phase of the motor; and a section of each one of the transverse windings passing through one channel, the remaining section folding back outside the set in close proximity to the outer base of the set of molded magnetic flux channel pole pieces.
Abstract:
The invention shows a transverse flux machine, including a transverse flux machine housing (200) with a stator (100) located in it and with a rotor rotating about an axis of rotation (A), wherein the stator (100) includes a coil assembly; wherein the coil assembly has at least one phase winding for connection to an electrical phase; and wherein the stator (100) has at least one first locating means (110) for locating and aligning the stator (100) inside the transverse flux machine housing (200).
Abstract:
The invention relates to a transverse flux electrical machine, comprising a rotor and a stator. The rotor has magnets, angularly adjacent magnets having magnetic polarizations of opposite directions. The stator has a plurality of magnetic cores annularly disposed along the stator. Each core comprises a U-shaped part and a magnetic foot. The U-shaped part is disposed such that its open side faces the air gap between the rotor and the stator and that a segment of a magnetic flux circulating in the U-shaped part is substantially parallel to the rotation axis. The magnetic foot is assembled to the U-shaped part such that it is contiguous to the air gap. The magnetic foot provides a magnetic pole. An electrical conductor coil is disposed in the interior area of all of the U-shaped parts.
Abstract:
An electric machine, such as a switched reluctance motor (SRM), having one or more transverse flux axes is described. The rotor and stator of the electric machine have more than one phase, not necessarily of even number. Flux guidance regions within the stator are angularly and spatially located such that they may be transverse, or not coinciding with, the plane perpendicular to the axis of shaft rotation. The flux guidance regions are composed so as to contain a magnetic field whose flux is guided in either a loop or coupled configuration. In the loop configuration, multiple flux guidance paths that are able to operate simultaneously exist within each chuck arrangement. In the coupled configuration, a single primary flux guidance path exists within the chuck arrangement. Transverse flux guidance allows for the removal and replacement of stator windings without significant disassembly or removal of the motor.