Abstract:
A system is provided for efficiently allocating a transmission period in a WLAN system. An access point (AP) transmits a PSMP message providing a downlink period and an uplink period provided to each station (STA), and at least one sub PSMP frame indicating a period of at least one of a downlink and an uplink for an STA requiring additional resource allocation. After exchanging data with the AP in the downlink and uplink periods provided by the PSMP frame, if there is a need for additional resource allocation, the STA receives the at least one sub PSMP frame and exchanges data with the AP in the period provided by the each sub PSMP frame.
Abstract:
An apparatus and method is provided for efficiently allocating a transmission period in a WLAN system. An access point (AP) transmits a PSMP message providing a downlink period and an uplink period provided to each station (STA), and at least one sub PSMP frame indicating a period of at least one of a downlink and an uplink for an STA requiring additional resource allocation. After exchanging data with the AP in the downlink and uplink periods provided by the PSMP frame, if there is a need for additional resource allocation, the STA receives the at least one sub PSMP frame and exchanges data with the AP in the period provided by the each sub PSMP frame.
Abstract:
An apparatus is provided for efficiently allocating a transmission period in a wireless network system. An access point (AP) transmits a PSMP frame indicating a downlink period provided to each station (STA) and a minimum amount of an uplink period allocated to each STA, and at least one sub PSMP frame indicating an uplink period additionally provided for an STA that transmitted a resource request message for remaining queued data in the uplink period indicated by the PSMP frame. If the uplink period indicated by the PSMP frame is insufficient to transmit the queued data, the STA transmits a data unit including a part of the queued data and a resource request message for the remaining queued data in the uplink period. After transmitting the resource request message, the STA receives the sub PSMP frame after the full period indicated by the sub PSMP frame, and transmits the remaining queued data to the AP in the uplink period indicted by the sub PSMP frame.
Abstract:
Provided is an automobile side airbag guide plate including support brackets disposed at both sides of a center pillar, fixed to an inner panel between a roof panel and a head liner, and supporting a lower part of an airbag module, wherein each of the support brackets includes a vertical part fixed to the inner panel between the roof panel and the head liner, and a horizontal support part extending from the vertical part to support the lower part of the airbag module fixed to the inner panel.
Abstract:
Disclosed is a receiver for configuring a Block Acknowledgement (BA) frame in a wireless communication system for acknowledgement of a data transmission from a transmitter. The receiver receives a Block Acknowledgement Request (BAR) frame in the data transmission from the transmitter and determines an overall size of a bitmap for the BA frame from the BAR frame to acknowledge the data transmission. The receiver configures the BA frame of the response to include the bitmap having the determined overall size, and transmits the configured BA frame to the transmitter. The bitmap of the BA frame includes bits representing reception results of packets of the data transmission received from the transmitter.
Abstract:
A polishing pad, platen, method of monitoring, method of manufacturing, and method of detecting using a pseudo window area, where the pseudo window area has a thickness less than a thickness of a polishing layer and a thickness greater than zero.
Abstract:
A bracket for securing a side airbag for an automotive vehicle is provided. The bracket includes a mounting plate formed of a synthetic resin material, and including a main body and a coupling part projecting from an upper surface of the main body and having a hole, and a bracket clip including two support plates in contact with front and rear surfaces of the coupling part and having through-holes in communication with the hole, and a bent part connecting the two support plates at each one side.Therefore, it is possible to protect the bracket to prevent damage to or deformation of the bracket when a bolt is screwed, thereby maintaining the side airbag in an optimal state.
Abstract:
A slurry composition includes an acidic aqueous solution and one or both of, an amphoteric surfactant and a glycol compound. Examples of the amphoteric surfactant include a betaine compound and an amino acid compound, and examples of the amino acid compound include lysine, proline and arginine. Examples of the glycol compound include diethylene glycol, ethylene glycol and polyethylene glycol.
Abstract:
A hard disk drive that includes a voice coil motor and a micro-actuator. The micro-actuator is controlled by a servo that utilizes a micro-actuator controller and a corresponding micro-actuator transfer function. The servo enters a mode to self-determine at least one transfer function coefficient of the micro-actuator controller.
Abstract:
In a slurry composition and a method of polishing a layer using the slurry composition, the slurry composition includes from about 3 to 20 percent by weight of an abrasive, from about 0.1 to 3 percent by weight of an ionic surfactant, from about 0.01 to 0.1 percent by weight of a nonionic surfactant, from about 0.01 to 1 percent by weight of a polish accelerating agent including an amino acid compound, and a remainder of an aqueous solution including a basic pH-controlling agent and water. The slurry composition including the nonionic surfactant and the polish accelerating agent may be used for speedily polishing a stepped upper portion of a silicon oxide layer, and may also enable a lower portion of the silicon oxide layer to function as a polish stop layer.