Abstract:
A driving apparatus configured to drive a light emitting device includes a driving current source module operable to supply current to the light emitting device via a node during operation. A protection module coupled to the node and the driving current source module selectively injects current to the node during operation. The driving current source module is controlled based on a detection result of a voltage on the node.
Abstract:
An electronic device includes a current comparator to generate an output current based upon a difference between a current flowing in an output branch and a current flowing in an input branch. A pair of transistors is coupled to an output of the current comparator. A first amplifier has inputs coupled to the pair of transistors and to a reference voltage, the first amplifier being configured to subtract the reference voltage from a voltage across the pair of transistors and output a difference voltage. A second amplifier has inputs coupled to the difference voltage and to the reference voltage, the second amplifier being configured to subtract the difference voltage from the reference voltage and output a pulse skipping mode reference signal.
Abstract:
A circuit can be used in a speaker system. The circuit includes an amplifier with an output configured to be coupled to a speaker. An offset comparator has an input coupled the output of the amplifier and is configured to provide an offset control signal. A digital circuit has a first input coupled to an output of the offset comparator, a second input configured to receive an amplifier control signal, a third input configured to receive a play control signal, and an output configured to provide a forced mute signal that can be used to control the amplifier.
Abstract:
An electronic device includes a current comparator to generate an output current based upon a difference between a current flowing in an output branch and a current flowing in an input branch. A pair of transistors is coupled to an output of the current comparator. A first amplifier has inputs coupled to the pair of transistors and to a reference voltage, the first amplifier being configured to subtract the reference voltage from a voltage across the pair of transistors and output a difference voltage. A second amplifier has inputs coupled to the difference voltage and to the reference voltage, the second amplifier being configured to subtract the difference voltage from the reference voltage and output a pulse skipping mode reference signal.
Abstract:
A circuit can be used in a speaker system. The circuit includes an amplifier with an output configured to be coupled to a speaker. An offset comparator has an input coupled the output of the amplifier and is configured to provide an offset control signal. A digital circuit has a first input coupled to an output of the offset comparator, a second input configured to receive an amplifier control signal, a third input configured to receive a play control signal, and an output configured to provide a forced mute signal that can be used to control the amplifier.
Abstract:
A bidirectional voltage differentiator circuit comprises start-up circuitry, sensing circuitry, and output circuitry coupled to logic circuitry. The start-up circuitry acts to start-up the sensing circuitry when the circuit is powered on, and accelerates the response of the sensing circuitry thereafter. The sensing circuitry senses variation in an input voltage applied to an input node. Responsive to the voltage variation sensed by the sensing circuitry, the output circuitry produces a state change at a first or second output node. The logic circuitry receives the states of the output nodes and produces a logic output signal to indicate the occurrence of the variation sensed in the input voltage. The voltage sensing circuit is operable to sense variation of the input voltage regardless of whether the voltage is rising or falling and without regard to the DC value of the input voltage.
Abstract:
A proximity detector device may include a first interconnect layer including a first dielectric layer, and first electrically conductive traces carried thereby, an IC layer above the first interconnect layer and having an image sensor IC, and a light source IC laterally spaced from the image sensor IC. The proximity detector device may include a second interconnect layer above the IC layer and having a second dielectric layer, and second electrically conductive traces carried thereby. The second interconnect layer may have first and second openings therein respectively aligned with the image sensor IC and the light source IC. Each of the image sensor IC and the light source IC may be coupled to the first and second electrically conductive traces. The proximity detector device may include a lens assembly above the second interconnect layer and having first and second lenses respectively aligned with the first and second openings.
Abstract:
A driving apparatus configured to drive a light emitting device includes a driving current source module operable to supply current to the light emitting device via a node during operation. A protection module coupled to the node and the driving current source module selectively injects current to the node during operation. The driving current source module is controlled based on a detection result of a voltage on the node.
Abstract:
A circuit can be used in a speaker system. The circuit includes an amplifier with an output configured to be coupled to a speaker. An offset comparator has an input coupled the output of the amplifier and is configured to provide an offset control signal. A digital circuit has a first input coupled to an output of the offset comparator, a second input configured to receive an amplifier control signal, a third input configured to receive a play control signal, and an output configured to provide a forced mute signal that can be used to control the amplifier.
Abstract:
A digital circuit can be used in a speaker system. An intermediate node provides a speaker protection control signal. A first latch for receives an offset control signal. A first logic gate receives a play control signal, the offset control signal, and the speaker protection control signal. A second logic gate is coupled to the first latch for receiving the play control signal and the speaker protection control signal. A second latch is coupled to the first logic gate for providing a forced mute signal. A third latch is coupled to the second logic gate and to the intermediate node.