Abstract:
A multilayered LED structure which has an active light-emitting layer of porous silicon carbide and a sequence of layers of porous silicon carbide underneath which serves as a quarter-wavelength multilayer mirror. The result is the electroluminescent emission of spectrally narrow visible light in the deep blue to UV range, in a highly directed pattern. The deep, intense blue luminescence is accomplished via the appropriate preparation and passivation of a single porous silicon carbide layer, followed by the deposition of a transparent, semiconducting layer, such as ITO (In.sub.2 O.sub.3) or ZnO.
Abstract translation:一种多层LED结构,其具有多孔碳化硅的活性发光层和下面的多孔碳化硅层,其用作四分之一波长多层反射镜。 结果是在深蓝色到紫外线范围内的光谱窄的可见光的电致发光发射,以高度定向的方式。 通过合适的单个多孔碳化硅层的制备和钝化,然后沉积透明的半导体层,例如ITO(In 2 O 3)或ZnO,可以实现深而强烈的蓝色发光。
Abstract:
A method of fabricating a high pressure piezoresistive pressure transducer having a substantially linear pressure versus stress output over its full range of operation. The method involves bonding a carrier wafer having a dielectric isolating layer on one surface and a supporting member on the opposite surface, to a pattern wafer containing at least two single crystalline longitudinal piezoresistive sensing elements of a second conductivity. Both the pattern wafer and sections of the carrier wafer are etched leaving the piezoresistive sensing elements bonded directly to the dielectric isolating layer, and a diaphragm member having a deflecting portion and a non-deflecting portion. The diaphragm member is constructed to have an aspect ratio which is of the order of magnitude of one. The piezoresistive sensing elements have a large transverse piezoresistive coefficient normal to the plane of the diaphragm and both a large longitudinal piezoresistive coefficient and a small transverse piezoresistive coefficient in the plane of the diaphragm. One of the at least two piezoresistive sensing elements is positioned above the non-deflection portion of the diaphragm in an area of minimal longitudinal stress and the other is positioned above the deflecting portion of the diaphragm in an area of high compressive stress. The positioning of the second sensor over the deflecting portion of the diaphragm is selected so that there will be equal and opposite resistance changes registered from the sensors. The method results in an improved transducer design when compared to prior art devices.
Abstract:
A method for fabricating semiconductor device comprises the steps of providing a substrate formed from a semiconductor material of a first conductivity type and converting a selected portion of the substrate to a porous semiconductor material. This partially forms a membrane-like structure of non-porous semiconductor material on the substrate. The porous semiconductor material is then oxidized to form a rigid layer of oxide material under the partially formed membrane-like structure. After forming the porous oxide material one or more integrated circuit elements can be fabricated on the partially formed membrane-like structure without fracturing it because rigid layer of oxide material operates to support it during the fabrication of the integrated circuit elements. Once the integrated circuit elements are fabricated, all or part of the rigid layer of oxide material is removed to complete the membrane-like structure and allow it to deflect in response to a force applied thereto.
Abstract:
A pressure transducer comprising at least one diaphragm formed in a wafer of semiconducting material, the at least one diaphragm being spaced from a first surface of the wafer, a first layer of semiconducting material disposed over the at least one diaphragm, the first layer forming at least one resonating beam over the at least one diaphragm, and a plurality of resistor elements formed from a third layer of semiconducting material disposed over the at least one resonating beam, and isolation means for dielectrically isolating the at least one resonating beam from the at least one diaphragm.
Abstract:
There is disclosed apparatus and methods of fabricating a piezoresistive semiconductor structure for use in a transducer. According to one method, a layer of silicon dioxide is grown over the surface of a first semiconductor wafer which is designated as a carrier wafer. A layer of glas is then formed on the top surface of the carrier wafer over said layer of silicon dioxide. A second wafer has diffused therein a high conductivity semiconductor layer which is diffused on a top surface of a sacrificial semiconductor wafer. The first and second wafers are then bonded together by means of an electrostatic bond with the high conductivity layer of the sacrificial wafer facing the glass layer of the first wafer. After securing the wafers together, one may etch away the remaining portion of the sacrificial wafer to provide a high conductivity resistive layer which is secured to the glass layer of the first wafer and is patterned to form a resistive network using standard photolithographic making. In another embodiment, the sacrificial wafer is processed by means of a high conductivity diffusion procedure whereby a resistive line pattern is formed in the second wafer. After diffusion, the second wafer is etched so that the high conductivity pattern projects from the top surface. This top surface consisting of the projected high conductivity resistive pattern is then bonded to the glass layer of the second wafer. After bonding the two wafers together, the unwanted N-type regions of the sacrificial wafer are etched away using a conductivity selective etch to form the resistive pattern.
Abstract:
A bridge array employing piezoresistive sensors responsive to the longitudinal piezoresistive effect generally exhibits a positive nonlinearity over a pressure range, while a bridge array employing piezoresistive sensors employing the transverse piezoresistive effect exhibits a negative nonlinearity over the pressure range. A composite pressure transducer is provided by interconnecting a longitudinal and transverse bridge array in a common composite configuration. The resulting transducer exhibits linear operation over the pressure range due to the cancellation of said nonlinearities from the connected arrays.
Abstract:
A pressure transducer employing a semiconductor diaphragm having a convoluted central section surrounded by a rigid peripheral section. The convolutions are a series of concentric grooves formed as squares producing a square nonplanar diaphragm in the preferred embodiment. The convolutions are formed on the semiconductor wafer by an anisotropic etch. Piezoresistive devices are diffused into the diaphragm in the peripheral region to form a bridge array. The transducer structure thus formed is capable of producing a linear and large magnitude voltage signal in response to a relatively small applied pressure or force.
Abstract:
A transducer structure is disclosed which comprises a single crystal semiconductor diaphragm dielectrically isolated by a layer of silicon dioxide from a single crystal gage configuration. The methods depicted employ high dose oxygen which is ion implanted into a monocrystalline wafer to form a buried layer of silicon dioxide with the top surface of the wafer being monocrystalline silicon. An additional layer of silicon is epitaxially grown on the top of the wafer to enable the etching or formation of a desired gage pattern.
Abstract:
There is disclosed a spreading resistance piezoresistive transducer which employs a planar diaphragm member fabricated from a semiconductor material and having deposited on a surface thereof at least three contact areas. A first contact area is located central to the diaphragm with a second area near the periphery of the diaphragm. A third contact is of a larger area and is positioned between the first and second contacts. A source of biasing potential is applied between the first and second contacts to cause current flow indicative of the spreading resistance between the contacts. The value of the spreading resistance varies in accordance with a force applied to the diaphragm.
Abstract:
An oil filled pressure transducer has a housing which has a top peripheral flange defining a recess. The housing has a plurality of tapered apertures directed from the top surface within the recess to a bottom surface with the diameter of each aperture being larger at the top surface than at the bottom surface. A separate terminal pin is located in each aperture and is bonded to the header by means of a glass bond which insulates the pin from the header. A metal diaphragm is coupled to the peripheral flange and a pressure sensor is located within the recess. The pressure sensor has terminals connected to the pins located in the tapered aperture. The recess is filled with oil for coupling pressures or forces imparted to the metal diaphragm to the sensor. The tapered apertures allow the unit to withstand high pressures which normally would cause the pins to rupture or dislodge from the housing.