Abstract:
The disclosure relates to methods and arrangements wherein a user equipment (UE) supporting a first frequency band HB is enabled to communicate with a network utilizing a second frequency band. The second frequency band is a sub-band of the first frequency band or overlaps with the first frequency band. The UE, which supports the first frequency band, implements 32 the channel numbering scheme of the second frequency band SB which overlaps with the first frequency band HB. This enables the UE supporting the first frequency band HB to recognize the second frequency band SB and communicate 33 with the network when the UE is camped or connected to a cell operating in the second frequency band SB.
Abstract:
A method of grouping cells of a radio communications network may include defining first and second groups of cells from a plurality of cells that transmit reference signals for positioning measurements. The first and second groups of cells may be defined according to a characteristic of the reference signals transmitted by the respective cells and/or of the respective cells that transmit the reference signals. Reference signals used for positioning measurements from the cells of the first group may be measured at a positioning target device. Reference signals used for positioning measurements from the cells of the second group may be measured at the positioning target device separately in time and/or separately in frequency from measuring the reference signals from the cells (103) of the first group.
Abstract:
The invention provides a mechanism that on an opportunistic basis, enables an increased performance of network related services in a user equipment without significantly increasing the user equipment's power consumption A method in a user equipment is provided for handling a radio receiver comprised in the user equipment The radio receiver is adapted to receive signals from a first network over a radio link The user equipment further comprises a battery The method comprises the steps of:—detecting a change of power consumption of the battery in the user equipment, and —adjusting the receiver activity level based on the detected change of battery power consumption.
Abstract:
The teachings presented herein enable a user terminal to perform a fast recovery from a radio link failure. In one aspect, the improvement in recovery time is achieved by commanding or otherwise causing the user terminal to perform radio link failure (RLF) recovery at a cell that is known to possess the user context, while considering that this cell should yield good radio conditions (if not the best) to the user terminal. A cell may be predefined for use by the user terminal in recovering its radio connection. Based on providing signal strength thresholds to the user terminal, for use in determining whether to use a predefined cell for reconnecting to the network, the user terminal attempts RLF recovery first in the predefined cell. By providing user context to the predefined cell in advance of a recovery attempt by the user terminal, the time for recovery is lessened. Note that the user terminal also may infer which cells are preferred.
Abstract:
The present invention relates to a method and an arrangement for controlling downlink power in a multi-carrier communication network system. The communication network system comprises communication network nodes (15) communicating with a plurality of user equipments (18) on uplink (17) and downlink (16) carriers over a radio interface. Downlink transmit power control commands are sent on at least one uplink control channel to support power control for a multiple of downlink carriers. Each transmit power control command is assigned a pre-determined code word known by said user equipment (18) and said communication network node (15) and/or different pre-determined slot formats, known by said user equipment (18) and said communication network node (15), are used to integrate different number of transmit power control command based on the number of used downlink and uplink carriers.
Abstract:
The present invention relates to a method and arrangements where each frequency channel is assigned a primary (global) number and a secondary (in-band) number. In accordance with embodiments of the present invention the primary number for one frequency channel (e.g. unicast downlink channel) and one or more secondary channel numbers to account for the corresponding unicast uplink and/or for one or more MBSFN channels are signalled. The primary (global) number indicates the band and frequency channel number while the secondary (in-band) number indicates the frequency channel within the relevant frequency band.
Abstract:
A radio receiver uses a first receiver type for receiving data and/or control information on one or more secondary carrier channel(s) if one or more common channels(s) are transmitted on the corresponding secondary carrier. Otherwise, the radio receiver uses a second receiver type for receiving data and/or control information on one or more secondary carrier channel(s).
Abstract:
A terminal unit, base station, computer readable medium and method for transmitting cell individual offset information from a base station in a cell in a communication network, to a user terminal that applies the cell individual offset information to measurement reports and/or events associated with the cell, including, generating the cell individual offset information; mapping the cell individual offset information on at least one channel that is different from a broadcast channel; and transmitting the mapped cell individual offset information.
Abstract:
The present invention relates to methods and arrangements in a telecommunication system for network-controlled bandwidth for neighbor cell measurements. An appropriate network unit in the serving cell signals measurement bandwidth values to the UE which uses the signal values to perform one or more downlink measurements on the serving as well as the neighbor cells.
Abstract:
The invention discloses a method for a cellular communications system, in which there is a first plurality of cells and a second plurality of base stations, each base station controlling the traffic to and from user terminals in a cell. User terminals can assume an idle mode, where a user terminal when in an idle mode performs cell reselection, comprising an evaluation of the cells which are available to the user terminal. The base stations of a number of cells in the system transmit a set of reselection probabilities, each probability in said set being the probability with which a terminal when in idle mode may carry out a reselection from its present cell to the cell to which the probability refers.