Abstract:
Provided is a device, which is a transmission device that can improve performance, that includes: a light source; and a transmitter that generates a modulated signal based on an input signal and transmits the modulated signal from the light source as visible light by changing a luminance of the light source in accordance with the modulated signal. The transmitter includes, in the modulated signal, a plurality of items of information related to service set identifiers (SSIDs) of a plurality of mutually different access points in a wireless local area network (LAN), and transmits the modulated signal from the light source.
Abstract:
In a transmission method according to one aspect of the present disclosure, a encoder performs error correction coding on an information bit string to generate a code word. A mapper modulates a first bit string in which the number of bits is the predetermined integral multiple of (X+Y) in the code word using a first scheme, the first scheme being a set of a modulation scheme in which an X-bit bit string is mapped to generate a first complex signal and a modulation scheme in which a Y-bit bit string is mapped to generate a second complex signal, and modulates a second bit string in which the first bit string is removed from the code word using a second scheme different from the first scheme.
Abstract:
Modulated signal A is transmitted from a first antenna, and modulated signal B is transmitted from a second antenna. As modulated signal B, modulated symbols S2(i) and S2(i+1) obtained from different data are transmitted at time i and time i+1 respectively. In contrast, as modulated signal A, modulated symbols S1(i) and S1(i)′ obtained by changing the signal point arrangement of the same data are transmitted at time i and time i+1 respectively. As a result the reception quality can be changed intentionally at time i and time i+1, and therefore using the demodulation result of modulated signal A of a time when the reception quality is good enables both modulated signals A and B to be demodulated with good error rate performances.
Abstract:
Provided is a transmission method that improves data reception quality in radio transmission using a single-carrier scheme and/or a multi-carrier scheme. The transmission method includes: generating a plurality of first modulated signals s1(i) and second modulated signals s2(i) from transmission data, the plurality of first modulated signals s1(i) being signals generated using a QPSK modulation scheme, and the plurality of second modulated signals s2(i) being signals generated using 16 QAM modulation; generating, from the plurality of first modulated signals s1(i) and the plurality of second modulated signals s2(i), a plurality of first signal-processed signals z1(i) and a plurality of second signal-processed signals z2(i) which satisfy a predetermined equation; and transmitting the plurality of first signal-processed signals z1(i) and the plurality of second signal-processed signals z2(i) using a plurality of antennas. A first signal-processed signal and a second signal-processed signal having identical symbol numbers are simultaneously transmitted at the same frequency.
Abstract:
A transmitting method includes: configuring a frame using a plurality of orthogonal frequency-division multiplexing (OFDM) symbols, by allocating a plurality of transmission data to a plurality of areas; and transmitting the frame. The plurality of areas are each identified by at least one time resource among resources and at least one frequency resource among frequency resources. The frame includes a first period in which a preamble is transmitted, and a second period in which the plurality of transmission data are transmitted by at least one of time division and frequency division. The second period includes a first area, and the first area includes a data symbol generated from first transmission data, a data symbol generated from second transmission data and subsequent to the data symbol generated from the first transmission data, and a dummy symbol subsequent to the data symbol generated from the second transmission data.
Abstract:
A transmitting device includes a plurality of transmission antennas, and includes: a signal processor which generates a first baseband signal by modulating data of a first stream, and a second baseband signal by modulating data of a second stream; and a transmitter which generates, from the first baseband signal, first transmission signals having different directivities, generates, from the second baseband signal, second transmission signals having different directivities, and transmits the first transmission signals and the second transmission signals at a same time.
Abstract:
A transmitting apparatus according to one aspect of the present disclosure transmits a plurality of first transmission data and a plurality of second transmission data by using an OFDM (Orthogonal Frequency-Division Multiplexing) method. The transmitting apparatus includes frame configuring circuitry, which in operation, generates a frame including a first period in which a preamble is transmitted, a second period in which the plurality of first transmission data is multiplexed by a time division multiplexing method and is transmitted, and a third period in which the plurality of second transmission data is multiplexed by a frequency division multiplexing method and is transmitted; and transmitting circuitry that transmits the frame.
Abstract:
Provided is a transmission method executed by a transmitting apparatus to transmit a content to a plurality of terminals. The content having transmission count information indicating a number of times the content is to be transmitted by the transmitting apparatus. The transmission method including a first transmission step of generating and transmitting a first transmission signal which transfers at least a first portion of a plurality of data packets including a plurality of content packets, storing data of the content therein, and a plurality of parity packets, generated from the content packets, and a second transmission step of, when the transmission count information of the content indicates a plurality of times, generating a second transmission signal including at least a second portion of the plurality of data packets, and transmitting the second transmission signal during a period which differs from a period during which the first transmission signal is transmitted.
Abstract:
A transmission method includes mapping processing, phase change processing, and transmission processing. In the mapping processing, a plurality of first modulation signals and a plurality of second modulation signals are generated using a first mapping scheme, and a plurality of third modulation signals and a plurality of fourth modulation signals are generated using a second mapping scheme. In the phase change processing, a phase change is performed on the plurality of second modulation signals and the plurality of fourth modulation signals using all N kinds of phases. In the transmission processing, the first modulation signals and the second modulation signals are respectively transmitted at a same frequency and a same time from different antennas, and the third modulation signals and the fourth modulation signals are respectively transmitted at a same frequency and a same time from the different antennas.
Abstract:
A transmission method of simultaneously transmitting a first modulated signal and a second modulated signal at a common frequency performs precoding on both signals using a fixed precoding matrix and regularly changes the phase of at least one of the signals. One of signal generation processing in which phase change is performed and signal generation processing in which phase change is not performed is selectable, thereby improving general versatility in signal generation.