Abstract:
Techniques for admitting user equipments (UEs) to wireless systems are disclosed. UEs may be assigned priorities for admission to a given wireless system. The UEs may then be admitted to the wireless system based on the priorities of the UEs for the wireless system. In one design, a UE may be identified for admission to a first wireless system among a plurality of wireless systems. Attributes (e.g., capabilities) of the UE for the plurality of wireless systems may be determined. An admission priority of the UE for the first wireless system may be determined based on the attributes of the UE for the plurality of wireless systems. Whether to admit the UE to the first wireless system may be determined based on the admission priority of the UE for the first wireless system and possibly the current resource usage of the first wireless system.
Abstract:
Embodiments described herein relate to connected-state radio session transfer in wireless communications. A target access network controller may create a radio session associated with an access terminal, the radio session corresponding with a source radio session at a source access network controller. The target access network controller may also establish a communication route between a data network and the access terminal via the target access network controller. The target access network controller may further receive a frozen state associated with the source radio session from the source access network controller. In an aspect, the frozen state may include a snapshot of any data being communicated through the source radio session when freezing occurred. The target access network controller may subsequently unfreeze the received state.
Abstract:
Low-power access points are used to identify traffic congestion zones in a network. The low-power access points collect metrics that are used identify high demand areas. The locations of the traffic congestion zones are then determined based on the locations of the low-power access points that identified high demand. In some embodiments, metrics are collected and processed in a distributed fashion at each femtocell. Each femtocell then outputs an indication of high demand in the area and/or takes action to address the high demand at an identified traffic congestion zone. Alternatively, the femtocells may collectively take action to address the high demand at one or more identified traffic congestion zones. In other embodiments, metrics may be collected from the femtocells at a central entity and processed to identifying any traffic congestion zones near the femtocells, whereby the central entity takes appropriate action to address the high demand.
Abstract:
A system performs an over-the-air transmission from a source small cell to a destination small cell. A channel for the over-the-air transmission is selected based on information to be sent. The system determines an information attribute for an over-the-air transmission from the source small cell to the destination small cell. The system selects an over-the-air channel, from a set of channels, based on the information attribute. The source small cell sends the over-the-air transmission on the selected over-the-air channel to the destination small cell.
Abstract:
Methods and apparatus are provided for adapting femtocell properties based on changes detected in network topology. A method includes detecting a network topology change associated with a network node. The method includes determining an availability factor of the network node based on the topology change. The method includes setting mobility parameters of at least one mobile entity serviced by the network entity and mitigating interference with at least one neighboring network node based at least in part on the network topology and on at least one adjusted resource parameter of the network entity.
Abstract:
Methods and apparatus are disclosed for configuring an access mode of a femtocell. The method includes determining whether a target channel is being used by a macrocell. The method includes, in response to the target channel being used by the macrocell, configuring the access mode to a closed access mode. The method includes in response to the target channel not being used by the macrocell, configuring the access mode to an open or hybrid access mode.
Abstract:
Methods and apparatus are disclosed for deploying at least one small-coverage base station in a coverage area. The method includes configuring the at least one small-coverage base station to operate on a given channel. The method includes detecting usage information of the at least one small-coverage base station on the given channel. The method includes adjusting an overall transmit power of at least one large-coverage base station in the coverage area based at least in part on the usage information.
Abstract:
Systems and methods are provided for facilitating base station identity discovery in a wireless communications system. This may be achieved, for example, by exchanging with a User Equipment (UE) a message including a Universal Terrestrial Radio Access Network Radio Network Temporary Identifier (U-RNTI) of the UE, wherein the U-RNTI comprises an indicator representative of a base station identifier of a Home NodeB (HNB) associated with the UE.
Abstract:
The present disclosure presents methods and apparatuses for improved paging area identifier selection in femto nodes and other low power base stations. In some examples described in the present disclosure, a method is provided for selecting a paging area identifier at a low power base station, which includes determining whether a neighboring high power base station is detectable. Additionally, the method can include observing, where the neighboring high power base station is detectable, a broadcasted paging area identifier of the neighboring high power base station. Furthermore, example methods may include selecting a paging area identifier of the low power base station to be the broadcasted paging area identifier and transmitting the paging area identifier.
Abstract:
Methods, systems, and devices for wireless communications are described. The method may include a user equipment (UE) generating a set of multimedia packets including a first multimedia packet and a second multimedia packet that is generated after the first multimedia packet. The UE may add the set of multimedia packets to a queue and apply an uplink packet handling protocol. Using the uplink packet handling protocol, the UE may discard the first multimedia packet and transmit, to a base station, the second multimedia packet. Using the second multimedia packet, a server in communication with the base station may generate a video frame and transmit the video frame to the UE via the base station.