摘要:
In accordance with one or more embodiments and corresponding disclosure thereof, various aspects are described in connection with providing shared scheduling request (SR) resources to devices for transmitting SRs. Identifiers related to the shared SR resources can be signaled to the devices along with indications of the shared SR resources in given time durations. Thus, devices can transmit an SR over shared SR resources related to one or more received identifiers for obtaining an uplink grant. This can decrease delay associated with receiving uplink grants since the device need not wait for dedicated SR resources before transmitting the SR. In addition, overhead can be decreased on control channels, as compared to signaling dedicated SR resources and/or uplink grants. Moreover, identifiers related to SR resources can correspond to a grouping of devices, such that a device can transmit over shared SR resources related to a group including the device.
摘要:
Handover parameter settings are automatically adapted in access points in a system to improve handover performance. Reactive detection techniques are employed for identifying different types of handover-related failures and adapting handover parameters based on this detection. Messaging schemes are also employed for providing handover-related information to access points. Proactive detection techniques also may be used for identifying conditions that may lead to handover-related failures and then adapting handover parameters in an attempt to prevent such handover-related failures. Ping-ponging may be mitigated by adapting handover parameters based on analysis of access terminal visited cell history acquired by access points in the system. In addition, configurable parameters (e.g., timer values) may be used to detect handover-related failures.
摘要:
Embodiments described herein relate to connected-state radio session transfer in wireless communications. A target access network controller may create a radio session associated with an access terminal, the radio session corresponding with a source radio session at a source access network controller. The target access network controller may also establish a communication route between a data network and the access terminal via the target access network controller. The target access network controller may further receive a frozen state associated with the source radio session from the source access network controller. In an aspect, the frozen state may include a snapshot of any data being communicated through the source radio session when freezing occurred. The target access network controller may subsequently unfreeze the received state.
摘要:
Interference issues between wireless network devices are mitigated. An evolved node B (eNodeB) may experience higher cell load or higher interference when serving user equipment (UEs) that are operating in an cell range extension (CRE) area in which the UEs are strongly affected by aggressor eNodeBs. An eNodeB experiencing higher cell load or serving user equipments (UEs) under higher interference generally requests an interfering/aggressor eNodeB to repartition some of its resources. Repartitioning of resources, however, may have a negative impact on the eNodeB serving CRE area UEs. In one aspect, a new measurement of utilization accounts for CRE status and differentiates between protected and unprotected resources, such as subframes.
摘要:
In a communication system in which a mobile station accessing the main network via a plurality of base stations, the mobile station can freely select any of the base stations as a forward link (FL) serving station. In addition, the mobile station can also freely select another or the same base station as a reverse link (RL) serving station. The mobile station has stored in its memory a plurality of routes corresponding to the plurality of base stations, with each route dedicatedly assigned to a particular base station. During handoff of one base station to another as either the FL or the RL serving station, exchanged data packets are processed in the respective routes of the base stations involved.
摘要:
Methods and apparatuses are provided that facilitate routing of messages of a positioning protocol, such as long term evolution (LTE) positioning protocol annex (LPPa). A positioning server can determine a network area identifier of one or more messages based at least in part on an identifier of a base station associated with the one or more messages. Based at least in part on the network area identifier, the positioning server can provide the one or more messages to an intermediate network node corresponding to the one or more base stations, such as a mobility management entity (MME). MME can similarly provide the one or more messages to an optional gateway between it and the one or more base stations based at least in part on receiving the network area identifier in the one or more messages. In addition, a base station can update positioning information with the positioning server.
摘要:
Various embodiments of methods and systems for dynamically adjusting a peak dynamic power threshold are disclosed. Advantageously, embodiments of the solution for peak dynamic power management optimize a peak dynamic power threshold based on estimations of real-time leakage current levels and/or actual power supply levels to a power domain of a system on a chip (“SoC”). In this way, embodiments of the solution ensure that a maximum amount of available power supply is allocated to dynamic power consumption for processing workloads at an optimum performance or quality of service (“QoS”) level without risking that the total power consumption (leakage power consumption+dynamic power consumption) for the power domain exceeds the power supply capacity.
摘要:
A method for synchronizing a wireless communication system is disclosed. A silence duration for a base station is determined based on the time required for a neighbor base station to obtain or maintain synchronization. All transmissions from the base station are ceased for the silence duration. Multiple base stations level may cease transmissions at the same time, thus mitigating interference.
摘要:
An integrated circuit (IC) includes an adaptive voltage scaling (AVS) controller configured to control a voltage supplied to a portion of the IC and at least one sensor configured to sense at least one state of the IC and to provide an output signal indicative of the at least one sensed state to the AVS controller, the IC having a first setting and a second setting, the AVS controller being configured to use the output signal to control the voltage in the first setting and the AVS controller being configured to control the voltage independently of the output signal in the second setting. Also a method of performing AVS is provided.
摘要:
Techniques for estimating and reporting channel quality indicator (CQI) are disclosed. Neighboring base stations may cause strong interference to one another and may be allocated different resources, e.g., different subframes. A UE may observe different levels of interference on different resources. In an aspect, the UE may determine a CQI for resources allocated to a base station and having reduced or no interference from at least one interfering base station. In another aspect, the UE may determine multiple CQI for resources of different types and associated with different interference levels. For example, the UE may determine a first CQI based on at least one first subframe allocated to the base station and having reduced or no interference from the interfering base station(s). The UE may determine a second CQI based on at least one second subframe allocated to the interfering base station(s).