Abstract:
An apparatus for controlled processing of materials includes a coolant jacketed vessel defining a first pyrolysis chamber and a second oxidation chamber, first heating elements mounted in the vessel to pyrolyze materials in the first chamber, second heating elements mounted in the vessel to oxidize materials in the second chamber, an induction fan, airflow inlet valves and an air intake proportioning valve connected to the vessel for producing separate variable flows of primary and secondary air into and through the first and second chambers, first sensors mounted on the vessel for sensing the temperatures in the first and second chambers and in the coolant, a second sensor mounted on the vessel for sensing the proportion of a predetermined gas in the discharge gases, and a control system responsive to the temperatures sensed in the first and second chambers and the coolant and to the proportion of the predetermined gas sensed in the discharge gases for controlling the induction fan and air intake proportioning valve so as to proportion the respective amounts of primary and secondary air flows through the first and second chambers in order to achieve effective pyrolyzing and oxidizing of the materials therein.
Abstract:
A heat generator assembly in a material processing apparatus includes a heater unit and an elongated deflector structure mounted adjacent thereto. The heater unit includes a plurality of elongated electric heating elements extending in generally parallel relation to one another and being operable for emitting heat radiation. The deflector structure is disposed along the electric heating elements and in circumferential relation partially about the electric heating elements for deflecting the heat radiation in a desired direction away from the heating elements. The heater unit also includes a pair of elongated electrically-conductive positive and negative electrodes and having spaced opposite end portions, an arrangement supporting the positive and negative electrodes and the electric heating elements in a spaced apart parallel relation to one another, and a plurality of connector elements electrically connecting selected ones of the opposite end portions of the electric heating elements with selected ones of the opposite end portions of the positive and negative electrodes so as to define at least one electrical circuit path between the positive and negative electrodes and through the electric heating elements.
Abstract:
In a treatment or processing or sewage sludge in the sense of recycling, where the sewage sludge is to begin with dried (T), subsequently converted (K) under anaerobic conditions at approximately 250.degree. to 350.degree. C. and finally is sintered at at least 1250.degree. C. in successive steps, it is proposed to perform all process steps including the conveyance of the commodity to be processed between the individual processing steps successively in continuous passage in a closed system. Only the vapors are removed in this system in the drying stage (T) and the conversion gases in the conversion stage (K) and they are condensed; the heat quantity contained in the flue gas generated during the sintering process (S) is utilized for heating to begin with the conversion stage (K) and after that the drying stage (T). Because the flue gases are used for heating the processing steps in the sequence of the naturally occurring temperature gradient, the processing of the sewage sludge is achieved so as to be nearly self-sufficient as far as the energy requirement is concerned, meaning the energy required for the processing is largely supplied by the calorific value of the organic ingredients contained in the sewage sludge itself. Because the sewage sludge is processed in a closed system, nefarious effects upon the environment are avoided.
Abstract:
A method is provided for combusting multifarious waste material. The waste to be combusted is subjected to a self maintaining pyrolysis in a long, horizontal chamber oven under oxygen depleted conditions, and is subsequently completely combusted under a supply of adequate air. A chamber oven is provided with an upper row of closable air inlet apertures at the upper side, divided over the wall length, and a lower row of closable air inlet apertures at the lower side, divided over the wall length. A larger air inlet aperture is provided in each one of the side walls in the vicinity of the oven throat, and air inlet apertures are also provided in the off-gas conduit.
Abstract:
A process for the thermal destruction of waste materials of unknown volatility disposed within a container, the process comprising the steps of (a) placing the open container in a combustion chamber of a pyrolysis furnace; (b) providing the pyrolysis furnace with a reducing atmosphere and raising the temperature in the pyrolysis furnace to remove volatile components of the material until a preselected temperature is reached; (c) maintaining the temperature in the pyrolysis furnace while controllably adding air until all the combustible materials are pyrolyzed; (d) continuing to add air during a final oxidation period to achieve combustion of all nonvolatile combustible materials; and (e) processing all volatilized materials in a secondary combustor fluidly communicating with the pyrolysis furnace.
Abstract:
Ducts for carrying off hot gas given off from the combustion chamber of an incinerator are built into the outer walls of a pyrolysis chamber located above the combustion chamber. The pyrolysis chamber has cross-sectional dimensions that are small enough to assure that heat from the gas ducts in walls completely penetrate the fill of waste in the pyrolysis chamber. Sluice gates are provided between the pyrolysis chamber and the combustion chamber on which the fill of the pyrolysis chamber rests when the gates are quiescent. The gates are moved to allow fragments of the pyrolysis products to drop into the combustion chamber or to turn over material resting on the gates.