Abstract:
Provided are a power management system and method. At least one frame module includes at least one bay and a plurality of first connectors at a rear portion of the at least one bay and at least one power conversion unit positioned in the at least one bay. The at least one power conversion unit includes a plurality of second connectors. Each second connector is removably coupled to a first connector of the plurality of first connectors. The first and second connectors include a combination of high power, cooling, and control connectors.
Abstract:
A low power method for determining whether a cargo destined for air transport is in a flying state having the steps of: providing a housing for attachment to a cargo the housing having: an accelerometer for detecting a linear acceleration, a gyroscope for detecting an angular rate, a controller measuring a linear acceleration with the accelerometer, measuring an angular rate with the gyroscope, providing the measured linear acceleration and angular rate to the controller, and generating a flight status output signal indicating whether the housing is in a flying state as a function of the linear acceleration signal and angular rate signal.
Abstract:
A vehicle-mounted weapon station is configurable to adjust the height of a rotational elevation axis thereof. The weapon station is provided with at least one fixed hanging ammunition container that is reloadable under the armored protection of the vehicle and the weapon station shell. The weapon station may have both electrically-powered and manually-powered drive systems for rotating a pedestal about an azimuth axis relative to the vehicle, and for rotating weaponry and operational units about the elevation axis, wherein the electrical and manual drive systems transmit power through the same output gear.
Abstract:
An RWS is configurable to adjust the height of a rotational elevation axis thereof by providing interchangeable pairs of removably mounted yoke arms, wherein the pairs have different heights. The RWS is provided with at least one fixed hanging ammunition container that is reloadable under the armored protection of the vehicle and the RWS shell.
Abstract:
A deep well linear motor pump system (122) comprising a downhole linear electric motor (222) having a stator and a shaft configured to move linearly relative to the stator, a downhole pump (220) having an inlet (227), an outlet (228), and a piston coupled to the linear motor shaft, a motor driver system (318) connected with the linear motor and configured to provide drive commands to the linear motor, a surface control computer (126) connected with the motor drive system and configured to control the linear motor, a sensor system (224) communicating with the control computer and configured to sense operating parameters of the linear motor, and the sensor system comprising a synchronous serial interface encoder configured to sense position of the motor shaft and a temperature sensor configured to sense the temperature of the motor.
Abstract:
An improved apparatus for controlling and providing a pulse-width-modulated signal to a switch operatively arranged between two terminals of a power supply for controlling an output power. A controller provides a pulse-width-modulated gate signal at a frequency to the switch. The controller is arranged to adjust the frequency as a function of a sensed parameter such that the power dissipated in the switch during switch transitions may be adjusted.
Abstract:
A voltage converter (110, 210) having a first bidirectional voltage line (112, 212), a second bidirectional voltage line (114, 214), a power storage element (L1) arranged between the first bidirectional voltage line and the second bidirectional voltage line, a switch element electronically coupled to the power storage element, a controller (141) for controlling the switch, and the controller configured and arranged to adjust a current flow between the first voltage line and the second voltage line such that a voltage level on the second bidirectional voltage line is substantially maintained at a target DC voltage.
Abstract:
A rotary actuator (100) having a reference structure (110), an output member (113) arranged for rotary movement relative to the reference structure, a first linear motor (116) arranged to selectively apply an output force urging a first motor member (119) and a second motor member (122) apart along a generally linear direction, in which the first linear motor is configured and arranged to cause a torque between the output member and the reference structure in a first direction, and second linear motor (137) arranged to selectively apply an output force urging a second linear motor first member (134) and a second motor member (137) apart along a generally linear direction, in which the second linear motor is configured and arranged to cause a torque between the output member and the reference structure in a direction opposite to the first direction.
Abstract:
A fan system includes a motor, a rotatable hub, and a plurality of fan blades. The motor is coupled with the hub by a hollow drive shaft, such that the drive system of the fan system is gearless. The motor is controlled by a PFC-based control module, which is in communication with sensors that are configured to sense parameters associated with operation of the fan system. The control module is configured to react in certain ways to certain conditions detected by the sensors, such that the fan system uses feedback-based control algorithms. A remote control panel is in communication with the control module. The remote control panel is operable to display fault conditions detected by the sensors. Blade retainers prevent fan blades from falling when a fan blade breaks free from the hub. Pins prevent the hub from falling when the hub breaks free from the rotor.
Abstract:
A differential coupling (20) has a body (21), a rotary input member (22), and two rotary output shafts (23, 24). The algebraic sum of the angular displacements of the output shafts is proportional to the rotation of the input member. The improvement includes mechanical means (39), such as a planetary gear (42), for sensing a torque differential between the output shafts, and a brake (38) mounted on the body and operatively arranged to selectively brake rotation of the input member, or both output members, when the difference between the torques on the outputs exceeds a predetermined first value.