Abstract:
An electronic device may be provided with a display. The electronic device may include a housing. A display trim may be formed from injection molded plastic that is molded directly onto the housing. The molded plastic trim may form a rectangular ring around the periphery of the housing. The housing may have angled or curved interior surfaces that are covered by the molded plastic trim. Computer-controlled positioners may be used to center the housing within an injection molding tool. Independently controlled positioners may also be used in capturing the housing between the lower die and the upper die in the injection molding tool. The injection molding tool may inject thermoplastic elastomer material into a channel in the upper die to form the plastic display trim.
Abstract:
An input mechanism is disclosed. The input mechanism includes a dome support structure defining an opening that extends through the dome support structure, a collapsible dome positioned in the opening and engaged with the dome support structure, and a cover member coupled to the dome support structure and covering the collapsible dome, thereby retaining the collapsible dome within the opening of the dome support structure.
Abstract:
An electronic device may be provided having an organic light-emitting diode display and control circuitry for operating the display. The display may include one or more display layers interposed between the control circuitry and a display layer having thin-film transistors. The electronic device may include a coupling structure interposed between the layer of thin-film transistors and the control circuitry that electrically couples the layer of thin-film transistors to the control circuitry. The coupling structure may include a dielectric member having a conductive via, a flexible printed circuit having a bent portion, or a conductive via formed in an encapsulation layer of the display. The display may include a layer of opaque masking material. The layer of opaque masking material may be formed on an encapsulation layer, an organic emissive layer, a thin-film transistor layer, or a glass layer of the organic light-emitting diode display.
Abstract:
An electronic device may be provided with upper and lower housing portions that are separated by a gap. Hinge structures may allow the upper housing portion to rotate between a closed position and an open position. A flexible printed circuit in the electronic device may be coupled between components in the upper housing portion such as the display and components in the lower housing portion and may span the gap. A hinge gap cover may cover the gap and may overlap the flexible printed circuit to block the flexible printed circuit from view when the upper housing portion is in the closed position. The hinge gap cover may be formed from a layer of radio-transparent material that is rotatably coupled to the upper housing portion and that is biased towards the lower housing with a spring structure.
Abstract:
An input mechanism is disclosed. The input mechanism includes a dome support structure defining an opening that extends through the dome support structure, a collapsible dome positioned in the opening and engaged with the dome support structure, and a cover member coupled to the dome support structure and covering the collapsible dome, thereby retaining the collapsible dome within the opening of the dome support structure.
Abstract:
An electronic device may be provided with a display. The display may be mounted in a display housing having multiple display housing layers. The display housing layers may include metal layers and fiber composite layers. A fiber composite display housing layer may have an array of dimples. The fiber composite display housing layer may be attached to a planar metal layer using adhesive. An array of openings may be formed in the metal layer to lighten the display housing. A foam layer or other core may be sandwiched between display housing layers. Components may be embedded in the foam. Edge members may run along peripheral edges of the display housing layers. Electrical components may be mounted on printed circuits and housed within cavities in the display housing. The electrical components may include light-emitting diodes for a display. Heat from the electrical components may be dissipated in the metal layer.
Abstract:
A camera may be mounted under a display in an electronic device. The display may include a polarizer layer, a color filter layer, and a thin-film-transistor layer. A layer of material such as a glass insert may be attached to an edge of the display. Openings may be formed in the layers of the display and the insert to accommodate the camera. A sleeve structure may be mounted within an opening. The camera may include lens structures formed from a stack of lens elements. One or more layers of the display may be interposed within the lens structures. The glass insert may be mounted within a notch in the color filter layer and thin-film transistor layer or along a straight edge of the color filter layer and thin-film transistor layer. The edge of the color filter layer may be recessed with respect to form a mounting shelf for the insert.
Abstract:
An electronic device may have a display. Inactive portions of the display such as peripheral portions of the display may be masked using an opaque masking layer. An opening may be provided in the opaque masking layer to allow light to pass. For example, a logo may be viewed through an opening in the opaque masking layer and a camera may receive light through an opening in the opaque masking layer. The display may include upper and lower polarizers, a color filter layer, and a thin-film transistor layer. The opaque masking layer may be formed on the upper polarizer, may be interposed between the upper polarizer and the color filter layer, or may be interposed between the color filter layer and the thin-film transistor layer. The upper polarizer may have unpolarized windows for cameras, logos, or other internal structures.
Abstract:
An electronic device may have a housing in which a display is mounted. A gasket may be mounted in a groove between the display and housing. The gasket may contain an embedded stiffener. Corner brackets may be installed in the corners of the housing. The housing may have inner and outer concentric ribs. Recesses in the housing may be configured to receive the corner brackets. The recesses may be formed between the inner and outer concentric ribs. Gap filling structures such as a foam layer may be interposed between a rear housing wall and a display backlight unit. Display color variations may be corrected by using a backlight unit having an array of light-emitting diodes of different colors. An electrostatic discharge protection layer may be grounded to a housing using conductive tape. Black edge coatings and adhesive-based structures may block stray light. Camera window regions may be supported using adhesive.
Abstract:
An electronic device display may have a color filter layer and a thin film transistor layer. A layer of liquid crystal material may be interposed between the color filter layer and the thin film transistor layer. A layer of polarizer may be laminated onto the surface of the color filter layer. Laser trimming may ensure that the edges of the polarizer are even with the edges of the color filter layer. The thin film transistor layer may have an array of thin film transistors that control pixels of the liquid crystal material in the display. Driver circuitry may be used to control the array. The driver circuitry may be encapsulated in a planarized encapsulant on the thin film transistor layer or may be mounted to the underside of the color filter layer. Conductive structures may connect driver circuitry on the color filter layer to the thin film transistor layer.