Abstract:
An electronic device may include a mechanical structure that mechanically supports the electronic device. One or more traces may be formed on one or more surfaces of the mechanical structure. Other electrical components may also be mounted on the surface of the mechanical structure and may or may not be connected to one or more of the traces. Additionally, one or more passivation layers may be formed on one or more of the surfaces, traces, and/or other electrical components and one or more traces and/or other electrical components may be intermixed with such passivation layers. In this way, the mechanical structure may be operable to function as an electrical component of the electronic device.
Abstract:
Conductive contacts can be disposed on multiple substrates or on different surfaces of a single substrate. Conductive material is disposed over at least a portion of the two conductive contacts to electrically connect the contacts. The conductive material may be disposed over at least one surface between the conductive contacts. One or more conductive borders can be formed on a surface of a conductive layer. The conductive border or borders can improve signal transmission across the surface of the conductive layer.
Abstract:
Flexible circuits for routing signals of a device, such as a touch sensor panel of a touch sensitive device, are provided. The flexible circuit can include a first set of traces for routing a first set of lines and a second set of traces for routing a second set of lines. The first set of traces can couple together the ends of at least a portion of the first set of lines. Additionally, the first set of traces can be non-intersecting or non-overlapping with the second set of traces. The flexible circuit can have a T-shape configuration and can be incorporated within a touch sensitive device, display device, printed circuit board, or the like. The flexible circuit can be placed over another flexible circuit, and can extend onto the device.
Abstract:
Components may have substrates with metal traces that form mating contacts. The components may be bonded together using anisotropic conductive adhesive bonding techniques. During bonding, conductive particles may be concentrated over the contacts by application of magnetic or electric fields or by using a template transfer process. Gaps between the contacts may be at least partially free of conductive particles to help isolate adjacent contacts. Polymer between the substrates may attach the substrates together. The conductive particles may be embedded in the polymer and crushed or melted to short opposing contacts together.
Abstract:
A sensor module can include a sensor that is configured to detect any given input or environmental conditions, such as, for example, touch or force inputs. The sensor module can be included in an electronic device. Methods for producing the sensor module are disclosed.
Abstract:
Methods and devices for using liquid optically clear adhesives (LOCAs) are described. A method for detecting uncured LOCA between a first substrate and a second substrate is described. In addition, an improved method for curing a laminated stack up having LOCA between a first substrate and a second substrate is described. The method includes a pre-curing method involving variable exposure of the LOCA. In addition, an improved light emitting diode (LED) unit assembly for exposing a laminated stack up to ultraviolet (UV) light during a pre-curing process is described. A method for testing the LED unit assembly prior to a pre-curing process is described.
Abstract:
An electronic device display may have a color filter layer and a thin film transistor layer. A layer of liquid crystal material may be interposed between the color filter layer and the thin film transistor layer. A layer of polarizer may be laminated onto the surface of the color filter layer. Laser trimming may ensure that the edges of the polarizer are even with the edges of the color filter layer. The thin film transistor layer may have an array of thin film transistors that control pixels of the liquid crystal material in the display. Driver circuitry may be used to control the array. The driver circuitry may be encapsulated in a planarized encapsulant on the thin film transistor layer or may be mounted to the underside of the color filter layer. Conductive structures may connect driver circuitry on the color filter layer to the thin film transistor layer.
Abstract:
Structures in an electronic device such as substrates associated with a display may be bonded together using liquid adhesive. Fiber-based equipment may be used to apply ultraviolet light to peripheral edges of an adhesive layer during bonding. There-dimensional adhesive shapes may be produced using nozzles with adjustable openings, computer-controlled positioners, and other adhesive dispensing equipment. Ultraviolet light may be applied to liquid adhesive through a mask with an opacity gradient. Adjustable shutter structures may control adhesive exposure to ultraviolet light. Ultraviolet light exposure may be used to create an adhesive dam that helps create a well defined adhesive border. Multiple layers of adhesive may be applied between a pair of substrates.
Abstract:
Flexible circuits for routing signals of a device, such as a touch sensor panel of a touch sensitive device, are provided. The flexible circuit can include a first set of traces for routing a first set of lines and a second set of traces for routing a second set of lines. The first set of traces can couple together the ends of at least a portion of the first set of lines. Additionally, the first set of traces can be non-intersecting or non-overlapping with the second set of traces. The flexible circuit can have a T-shape configuration and can be incorporated within a touch sensitive device, display device, printed circuit board, or the like. The flexible circuit can be placed over another flexible circuit, and can extend onto the device.
Abstract:
A lamination system may be provided for attaching a rigid structure to a compliant structure. The system may include a fixed stage for holding the rigid structure and a movable stage for holding the compliant structure. The rigid structure may be a rigid substrate or an assembly of substrates such as a sensor-on-cover-glass assembly for a touch-sensitive electronic device display. The compliant structure may be a sheet of optically clear adhesive. The system may include a temperature-controlled lamination roller attached to the movable stage. The roller may be heated or cooled during lamination operations. The compliant structure may be laminated onto the rigid structure by pressing the compliant structure onto the rigid structure using the roller while controlling the temperature of the roller. The roller may be heated while pressing the compliant structure onto the rigid structure to minimize the risk of lamination defects.