Abstract:
An apparatus and method for creating enlarged particles in a flow. The apparatus includes a coiled tube having a tube diameter and a coil diameter, the tube having an input receiving the flow and an output, the tube having a length between the input and the output. A heater heats a first portion of the tube along a first, longitudinal portion of the tube, and a cooler cools a second, longitudinal portion of the tube along at least a second portion of the tube. The method includes heating a first portion of the tube along a first longitudinal portion of the tube, and simultaneously cooling a second portion of the tube along at least a second longitudinal portion of the tube. While heating and cooling, the method includes introducing a flow into an interior of the tube at an input, the flow moving the output.
Abstract:
An apparatus and method for creating enlarged particles in a flow. The apparatus includes a coiled tube having a tube diameter and a coil diameter, the tube having an input receiving the flow and an output, the tube having a length between the input and the output. A heater heats a first portion of the tube along a first, longitudinal portion of the tube, and a cooler cools a second, longitudinal portion of the tube along at least a second portion of the tube. The method includes heating a first portion of the tube along a first longitudinal portion of the tube, and simultaneously cooling a second portion of the tube along at least a second longitudinal portion of the tube. While heating and cooling, the method includes introducing a flow into an interior of the tube at an input, the flow moving the output.
Abstract:
Technology is presented for the high efficiency concentration of fine and ultrafine airborne particles into a small fraction of the sampled airflow by condensational enlargement, aerodynamic focusing and flow separation. A nozzle concentrator structure including an acceleration nozzle with a flow extraction structure may be coupled to a containment vessel. The containment vessel may include a water condensation growth tube to facilitate the concentration of ultrafine particles. The containment vessel may further include a separate carrier flow introduced at the center of the sampled flow, upstream of the acceleration nozzle of the nozzle concentrator to facilitate the separation of particle and vapor constituents.
Abstract:
A method and apparatus for the in-situ, chemical analysis of an aerosol. The method may include the steps of: collecting an aerosol; thermally desorbing the aerosol into a carrier gas to provide desorbed aerosol material; transporting the desorbed aerosol material onto the head of a gas chromatography column; analyzing the aerosol material using a gas chromatograph, and quantizing the aerosol material as it evolves from the gas chromatography column. The apparatus includes a collection and thermal desorption cell, a gas chromatograph including a gas chromatography column, heated transport lines coupling the cell and the column; and a quantization detector for aerosol material evolving from the gas chromatography column.
Abstract:
An apparatus and method for the delivery and deposition of particles air-liquid-interface (ALI) cell cultures includes a sample inlet coupled to a growth tube having interior walls that are wet. The growth tube is configured to operate at a first temperature along a first length of the tube and a second temperature along a second length positioned between the first length and a growth tube outlet. The apparatus also includes a nozzle plate having a plurality of nozzles. The exposure chamber adapted to hold cell cultures at an air-liquid interface positioned underneath the plurality of nozzles and a temperature regulator adapted to control a temperature of the exposure chamber. The apparatus also includes a controller including instructions operable to cause the controller to maintain a relative humidity within the exposure chamber by controlling at least the second temperature of the growth tube and the temperature of the exposure chamber.
Abstract:
A wick liquid sensor suitable for use in a particle condensation device is provided. The sensor includes a light source configured to illuminate a surface of the wick. A detector is configured to detect wick reflected light from the light source and determine the intensity of reflected light. The wick is formed from a porous media that is wettable by the liquid, and becomes translucent when filled with the liquid. The amount of reflectivity decreases as the saturation content of the liquid in the wick increases.
Abstract:
This technology relates to the enlargement by water condensation in a laminar flow of airborne particles with diameters of the order of a few nanometers to hundreds of nanometers to form droplets with diameters of the order of several micrometers. The technology presents several advanced designs, including the use of double-stage condensers. It has application to measuring the number concentration of particles suspended in air or other gas, to collecting these particles, or to focusing these particles.
Abstract:
This technology relates to the enlargement by water condensation in a laminar flow of airborne particles with diameters of the order of a few nanometers to hundreds of nanometers to form droplets with diameters of the order of several micrometers. The technology presents several advanced designs, including the use of double-stage condensers. It has application to measuring the number concentration of particles suspended in air or other gas, to collecting these particles, or to focusing these particles.
Abstract:
A system and method for particle enlargement with continuously wetted wicks includes a container into which a flow of particle-laden air is introduced in a laminar manner through an inlet and to an outlet. The container has a first section, a second section and a third section though which the particle-laden air flows between the inlet and the outlet. The temperature of the second section is warmer than that of the first section at the inlet and the third section at the outlet. In one embodiment, a continuous wick spanning an interior wall of the first second, second section and third section, said wick being capable of internally transporting liquid water along its length is provided. Alternatively, a wick characterized by a bubble point pressure has one side in contact with air and an opposing side mounted adjacent to the interior wall of a housing with a gap formed between the wick and the housing, wherein the wick is used with a water reservoir such that the pressure difference between the air flow and the water filled gap is less than the bubble point pressure of the wick material.
Abstract:
Technology is presented for the high efficiency concentration of fine and ultrafine airborne particles into a small fraction of the sampled airflow by condensational enlargement, aerodynamic focusing and flow separation. A nozzle concentrator structure including an acceleration nozzle with a flow extraction structure may be coupled to a containment vessel. The containment vessel may include a water condensation growth tube to facilitate the concentration of ultrafine particles. The containment vessel may further include a separate carrier flow introduced at the center of the sampled flow, upstream of the acceleration nozzle of the nozzle concentrator to facilitate the separation of particle and vapor constituents.