摘要:
A plant or refinery may include equipment such as reactors, heaters, heat exchangers, regenerators, separators, or the like. Types of heat exchangers include shell and tube, plate, plate and shell, plate fin, air cooled, wetted-surface air cooled, or the like. Operating methods may impact deterioration in equipment condition, prolong equipment life, extend production operating time, or provide other benefits. Mechanical or digital sensors may be used for monitoring equipment, and sensor data may be programmatically analyzed to identify developing problems. For example, sensors may be used in conjunction with one or more system components to detect and correct maldistribution, cross-leakage, strain, pre-leakage, thermal stresses, fouling, vibration, problems in liquid lifting, conditions that can affect air-cooled exchangers, conditions that can affect a wetted-surface air-cooled heat exchanger, or the like. An operating condition or mode may be adjusted to prolong equipment life or avoid equipment failure.
摘要:
Disclosed are a process and a system for synthesis gas conversion. The process includes contacting a synthesis gas feed of hydrogen and carbon monoxide having a H2/CO ratio from 0.5 to 3.0 with a hybrid catalyst of particles having a particle size from 50 to 500 μm and having at least one zeolite and a Fischer-Tropsch component wherein the ratio of zeolite to Fischer-Tropsch component is from 0.1:1 to 30:1 and the hybrid catalyst includes from 0.5 to 40 wt % Fischer-Tropsch component. The process is conducted in a compact heat exchange reactor having a set of reaction passages disposed between a synthesis gas feed header and a products header and a set of coolant passages disposed between a coolant inlet header and a coolant outlet header. The set of coolant passages conducts a coolant therethrough, and the set of reaction passages contains the hybrid catalyst therein and conducts synthesis gas and reaction products therethrough. The process is conducted at a temperature from 200 to 2800° C., a pressure from 5 to 40 atmospheres, a recycle ratio from 1 to 3, and a gaseous hourly space velocity less than 20,000 volumes of gas per volume of catalyst per hour. The effluent produced includes a hydrocarbon product containing at least 50 wt % C5+ hydrocarbons and less than 5 wt % C21+ hydrocarbons at a C5+ productivity from 0.05 to 2 gC5+/gcat/h.
摘要:
A reformer reactor 10 for producing a hydrogen-rich gas includes a first zone 18, a second zone 20, a third zone 22, a fourth zone 24 and a product gas collection space 40. The zones are sequentially adjacent. A flow path P1 is provided for directing flow of a reaction stream in diverging directions from the first zone 18 into the second zone 20, the flow of the reaction stream continuing in the same general diverging directions through the second zone 20 and into and through the third and fourth zones 22, 24. Directing the flow in diverging directions permits flow into and through a zone over more than just a single cross-sectional geometry of the zone or a single cross-section of the flow path transverse to the direction of flows. This configuration can be used to require a lower pressure for flowing the reaction stream so as to reduce the parasitic requirements of the reactor. This configuration can also be used to increase throughput of the reactor.
摘要:
A catalyst loading system comprising: a vessel comprising at least one gas distribution nozzle at or near the bottom of the vessel, a top fluid distributor located at or near the top of the vessel, a catalyst inlet through which catalyst is introduced into the vessel, a first contact point at which catalyst introduced into the vessel first contacts the contents of the vessel, and a discharge outlet whereby catalyst exits the vessel. Methods of preparing catalyst slurry for introduction into a downstream reactor or in-situ activation within the vessel utilizing the catalyst loading system are also disclosed.
摘要:
An apparatus and method for creating enlarged particles in a flow. The apparatus includes a coiled tube having a tube diameter and a coil diameter, the tube having an input receiving the flow and an output, the tube having a length between the input and the output. A heater heats a first portion of the tube along a first, longitudinal portion of the tube, and a cooler cools a second, longitudinal portion of the tube along at least a second portion of the tube. The method includes heating a first portion of the tube along a first longitudinal portion of the tube, and simultaneously cooling a second portion of the tube along at least a second longitudinal portion of the tube. While heating and cooling, the method includes introducing a flow into an interior of the tube at an input, the flow moving the output.
摘要:
A catalyst loading system comprising: a vessel comprising at least one gas distribution nozzle at or near the bottom of the vessel, a top fluid distributor located at or near the top of the vessel, a catalyst inlet through which catalyst is introduced into the vessel, a first contact point at which catalyst introduced into the vessel first contacts the contents of the vessel, and a discharge outlet whereby catalyst exits the vessel. Methods of preparing catalyst slurry for introduction into a downstream reactor or in-situ activation within the vessel utilizing the catalyst loading system are also disclosed.
摘要:
Apparatus and method for simultaneous recovery of hydrogen from water and from hydrocarbon feed material. The feed material is caused to flow over a heated catalyst which fosters the water-gas shift reaction (H.sub.2 O+COH.sub.2 +CO.sub.2) and the methane steam reforming reaction (CH.sub.4 +H.sub.2 O3 H.sub.2 +CO). Both of these reactions proceed only to partial completion. However, by use of a Pd/Ag membrane which is exclusively permeable to hydrogen isotopes in the vicinity of the above reactions and by maintaining a vacuum on the permeate side of the membrane, product hydrogen isotopes are removed and the reactions are caused to proceed further toward completion. A two-stage palladium membrane reactor was tested with a feed composition of 28% CQ.sub.4, 35% Q.sub.2 O (where Q=H, D, or T), and 31% Ar in 31 hours of continuous operation during which 4.5 g of tritium were processed. Decontamination factors were found to increase with decreasing inlet rate. The first stage was observed to have a decontamination factor of approximately 200, while the second stage had a decontamination factor of 2.9.times.10.sup.6. The overall decontamination factor was 5.8.times.10.sup.8. When a Pt/.alpha.-Al.sub.2 O.sub.3 catalyst is employed, decoking could be performed without catalyst degradation. However, by adjusting the carbon to oxygen ratio of the feed material with the addition of oxygen, coking could be altogether avoided.
摘要翻译:从水和烃进料同时回收氢的装置和方法。 使原料流过促进水煤气变换反应(H 2 O + CO + ZH 2 + CO 2)和甲烷蒸汽重整反应(CH 4 + H 2 O + Z 3 H 2 + CO)的加热催化剂。 这两个反应只进行部分完成。 然而,通过使用在上述反应附近仅对氢同位素可渗透的Pd / Ag膜,并且通过在膜的渗透侧保持真空,除去产物氢同位素并进一步进行反应 完成。 在连续操作的31小时内,用28%CQ4,35%Q2O(其中Q = H,D或T)和31%Ar的进料组成来测试两级钯膜反应器,其中4.5g氚 处理。 发现净化因子随进口速率的增加而增加。 观察到第一阶段的去污因子约为200,而第二阶段的去污因子为2.9×10 6。 整体去污因子为5.8×10 8。 当使用Pt /α-Al 2 O 3催化剂时,可以进行脱焦而没有催化剂降解。 然而,通过添加氧气调节进料的碳与氧比,可以完全避免焦化。
摘要:
This invention relates to improvements in processes and catalysts for elevated temperature, gas phase, catalyzed reactions in general; it is particularly illustrated by reference to the manufacture of hydrogen cyanide.
摘要:
A reformer reactor 10 for producing a hydrogen-rich gas includes a first zone 18, a second zone 20, a third zone 22, a fourth zone 24 and a product gas collection space 40. The zones are sequentially adjacent. A flow path P1 is provided for directing flow of a reaction stream in diverging directions from the first zone 18 into the second zone 20, the flow of the reaction stream continuing in the same general diverging directions through the second zone 20 and into and through the third and fourth zones 22,24. Directing the flow in diverging directions permits flow into and through a zone over more than just a single cross-sectional geometry of the zone or a single cross-section of the flow path transverse to the direction of flows. This configuration can be used to require a lower pressure for flowing the reaction stream so as to reduce the parasitic requirements of the reactor. This configuration can also be used to increase throughput of the reactor.