摘要:
A process for recovering a volatile carboxylic acid from an aqueous stream comprising same, the process comprising the steps of: (i) steam stripping the carboxylic acid from the aqueous stream, which aqueous stream is produced by a conversion process using a lignocellulosic feedstock as a substrate, the steam stripping comprising contacting the aqueous stream with steam by flowing the aqueous stream and the steam countercurrent to one another, thereby producing a vapour stream comprising vapourized carboxylic acid and steam and a stripped aqueous stream; (ii) extracting the vapourized carboxylic acid with an organic solvent by contacting the vapour stream with the organic solvent to produce (a) a stream comprising the organic solvent and the carboxylic acid and (b) the steam at least substantially depleted of the carboxylic acid, wherein the organic solvent has an atmospheric boiling point of at least about 150° C. and is insoluble in water; (iii) returning the steam from step (ii) to the steam stripping step (step i) to further strip the carboxylic acid from the aqueous stream; and (iv) separating the carboxylic acid from the organic solvent.
摘要:
Provided is a process for the enzymatic hydrolysis of cellulose to produce glucose from a pretreated cellulosic feedstock. The process comprises providing an aqueous slurry of the pretreated cellulosic feedstock that has a water content that is less than about 140% of the maximum water holding capacity of the pretreated cellulosic feedstock. The aqueous slurry of the pretreated cellulosic feedstock is fed to one or more unmixed hydrolysis reactors and hydrolyzed with cellulase enzymes therein. In the unmixed hydrolysis reactor(s), the cellulase enzymes hydrolyze a portion of the cellulose to produce soluble sugars, thereby producing a mixture of partially hydrolyzed cellulose containing soluble sugars. The hydrolysis of the cellulose to glucose is continued by feeding the mixture of partially hydrolyzed cellulose to one or more mixed hydrolysis reactors. Also provided are systems for carrying out the foregoing enzymatic hydrolysis.
摘要:
The present invention relates to a method for producing a fermentation product from a sugar hydrolysate. The method comprises fermenting the sugar hydrolysate in a fermentation system with yeast to produce a fermentation broth comprising a fermentation product; introducing acid and an oxidant, such as chlorine dioxide, to the fermentation system so as to expose microbial contaminants in the fermentation system at one or more stages to chlorine dioxide and a pH of less than 3.0; and recovering the fermentation product. In one example of the invention, a yeast slurry obtained from a yeast recycle step is treated with acid and the oxidant.
摘要:
The present invention relates to novel xylose-fermenting yeast strains (for example, yeast of the genus Saccharomyces, e.g., S. cerevisiae) with an enhanced ability to ferment the xylose (and/or another pentose sugar) present in a lignocellulosic hydrolysate to a fermentation product(s) (for example, an alcohol (e.g., ethanol) or a sugar alcohol (e.g., xylitol)).
摘要:
A process for the enzymatic hydrolysis of cellulose to produce a hydrolysis product from a pre-treated cellulosic feedstock is provided. The process comprises introducing an aqueous slurry of the pre-treated cellulosic feedstock at the bottom of a hydrolysis reactor. Axial dispersion in the reactor is limited by avoiding mixing and maintaining an average slurry flow velocity of about 0.1 to about 20 feet per hour, such that the undissolved solids flow upward at a rate slower than that of the liquid. Cellulase enzymes are added to the aqueous slurry before or during the step of introducing. An aqueous stream comprising hydrolysis product and unhydrolyzed solids is removed from the hydrolysis reactor. Also provided are enzyme compositions which comprise cellulase enzymes and flocculents for use in the process. In addition, a kit comprising cellulase enzymes and flocculent is provided.
摘要:
A method for producing glucose from a lignocellulosic feedstock is provided. The method comprises pretreating the lignocellulosic feedstock with acid to produce a pretreated feedstock composition. A calcium-containing stream is provided that comprises calcium that is obtained from the lignocellulosic feedstock and a calcium carbonate-containing stream is obtained by precipitation of the calcium from the calcium-containing stream. The pH of the pretreated feedstock is adjusted with (a) the calcium carbonate-containing stream; (b) a calcium hydroxide-containing stream that is derived from said calcium carbonate-containing stream by subjecting said calcium carbonate-containing stream to calcination; or (c) a combination of the calcium carbonate-containing stream and the calcium hydroxide-containing stream. The pH adjustment results in a neutralized pretreated lignocellulosic feedstock having a pH between about 3 and about 9 and enzymatic hydrolysis of the neutralized, pretreated lignocellulosic feedstock is then conducted with cellulase enzymes to produce the glucose.
摘要:
A process for the enzymatic hydrolysis of cellulose to produce a hydrolysis product comprising glucose from a pretreated lignocellulosic feedstock and enzymes for use in the process are provided. The process comprises hydrolyzing an aqueous slurry of a pretreated lignocellulosic feedstock with cellulase enzymes, one or more than one β-glucosidase enzyme and a binding agent for binding the β-glucosidase enzyme to fiber solids present in the aqueous slurry. During the hydrolysis, both the cellulase enzyme and β-glucosidase enzyme bind to the fiber solids. The hydrolysis is performed in a solids-retaining hydrolysis reactor so that unhydrolyzed fiber solids and bound enzyme are retained in the reactor longer than the aqueous phase of the slurry.
摘要:
Provided is an enzyme mixture for hydrolyzing a pretreated lignocellulosic feedstock to soluble sugars. The enzyme mixture comprises EG4 at a fractional concentration (fEG4) of about 0.25 to about 0.83 (w/w), Swollenin at a fractional concentration (fSwo1) of about 0 to about 0.66 (w/w), and Cip1 at a fractional concentration (fCip1) of 0 to about 0.33 measured relative to all accessory enzymes present in the enzyme mixture. Also provided are processes for converting a pretreated lignocellulosic feedstock to soluble sugars using the enzyme mixtures, and methods of using and producing such enzyme mixtures.
摘要:
The present invention provides a process for obtaining a product stream comprising one or more sulfate salts of potassium, sodium or ammonium from a sugar stream resulting from [processing a lignocellulosic feedstock, said sugar stream which includes calcium sulfate and one or more of these sulfate salts. The process comprises (i) treating the sugar stream to remove calcium, thereby producing a sugar stream containing substantially no calcium, and obtaining a salt stream comprising a calcium salt;(ii) choosing a feed stream that is either (a) a clarified salt stream derived from the salt stream of step (i) after removal of calcium therefrom; or (b) the sugar stream containing substantially no calcium that is produced in step (i); (iii) introducing the feed stream chosen in step (ii) to an ion exchange bed; and (iv) regenerating the ion exchange resin bed of step (iii) with sulfuric acid to produce the product stream.
摘要:
Discharging pretreated biomass from a pretreatment reactor and mixing the discharged pretreated biomass with a cooling liquid in a vessel provides a cooled slurry having a consistency that is less than about 12 wt %. Since the consistency is relatively low, the cooled slurry may be pumped to a higher elevation using standard pumping equipment. At the higher elevation, the cooled slurry may be separated into a first stream comprising a liquid component of the slurry and a second other stream comprising a solid component of the slurry (e.g., having a consistency between about 15 wt % and 40 about wt %). The solid component may be fed to an inlet of a hydrolysis reactor, while the liquid component may be fed to a cooling system that provides a cooled stream. The cooled stream may then be cycled back to the vessel.