摘要:
A technique for increasing mechanical strength, such as contact pressure strength, and abrasion resistance and bending fatigue strength, of mechanical and/or structural parts by using surface hardening treatment. A quenched steel member, wherein a hard nitride layer is formed on the surface of a steel material, and an inorganic compound layer containing at least one metal oxide selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, W, Mo and Al is formed on the hard nitride layer.
摘要:
There is provided an alkaline cleaning of aluminum alloy, in which the attained corrosion resistance is equal or superior to the acidic cleaning agent, and which mitigates the disadvantages of the acidic cleaning agent, such as corrosion of plant, processing of the waste liquid, and energy cost, and which attains improved productivity.The cleaning liquid from 0.5 to 40 g/L in total of one or more alkali builders selected from alkali metal hydroxide, alkali metal carbonate, inorganic alkali metal phosphate and alkali metal silicate, from 0.2 to 10 g/L of one or more of organic phosphonic acid and its salt (A), from 0.001 to 2 g/L of one or more metallic ions (B) selected from metallic ions having from 5.0 to 14.0 of stability constant with the organic phosphonic acid and its salt, and from 0.1 to 10 g/L of surfactant. Particularly, the weight ratio of (A):(B) is in a range of from 100:0.05˜20.
摘要:
The present invention is the method for surface treatment of a metal material containing iron and/or zinc, containing component (A) and component (B); where (A) is a compound containing at least one metal element selected from the group consisting of Ti, Zr, Hf and Si, (B) is a compound containing fluorine as a supplying source of HF, wherein the ratio K=A/B between the total mole weight A of metal elements of Ti, Zr, Hf and Si in the compound of component (A) and the mole weight B which when the total fluorine atoms in the fluorine-containing compound of component (B) is converted to HF is within the range of 0.06≦K≦0.18, and the concentration of component (A) indicated by the total mole concentration of metal elements of Ti, Zr, Hf and Si is within the region of 0.05 to 100 m mol/L. To the treating solution for surface treatment, at least one compound containing at least one metal element selected from the group consisting of Ag, Al, Cu, Fe, Mn, Mg, Ni, Co and Zn can be blended. It is possible to form a surface-treated film which is superior in corrosion resistance after being coated on the surface of a metal containing iron or zinc from a solution which does not contain a harmful component to the environment.
摘要翻译:本发明是含有组分(A)和组分(B)的含铁和/或锌的金属材料的表面处理方法。 其中(A)是含有选自Ti,Zr,Hf和Si中的至少一种金属元素的化合物,(B)是含氟作为HF的供给源的化合物,其中K = A / B 在组分(A)的化合物中Ti,Zr,Hf和Si的金属元素的总摩尔量A与摩尔重量B之间,当组分(B)的含氟化合物中的总氟原子转化为 HF在0.06 <= K <= 0.18的范围内,Ti,Zr,Hf和Si的金属元素的总摩尔浓度所表示的成分(A)的浓度为0.05〜100μmol/ L. 对于用于表面处理的处理溶液,可以混合至少一种含有选自Ag,Al,Cu,Fe,Mn,Mg,Ni,Co和Zn中的至少一种金属元素的化合物。 可以在不含有有害成分的溶液与环境中涂布含铁或锌的金属的表面后,形成耐腐蚀性优异的表面处理膜。
摘要:
[Problems] There is provided an alkaline cleaning of aluminum alloy, in which the attained corrosion resistance is equal or superior to the acidic cleaning agent, and which mitigates the disadvantages of the acidic cleaning agent, such as corrosion of plant, processing of the waste liquid, and energy cost, and which attains improved productivity. [Means for Solution] The cleaning liquid from 0.5 to 40 g/L in total of one or more alkali builders selected from alkali metal hydroxide, alkali metal carbonate, inorganic alkali metal phosphate and alkali metal silicate, from 0.2 to 10 g/L of one or more of organic phosphonic acid and its salt (A), from 0.001 to 2 g/L of one or more metallic ions (B) selected from metallic ions having from 5.0 to 14.0 of stability constant with the organic phosphonic acid and its salt, and from 0.1 to 10 g/L of surfactant. Particularly, the weight ratio of (A): (B) is in a range of from 100:0.05˜20.
摘要:
Disclosed are a process for hot-dip coating a steel material with a molten aluminum alloy according to a one-stage coating method using a flux which comprises removing an oxide layer on a steel material surface, conducting activating treatment, then coating a chloride flux solution and dipping the steel material in a molten aluminum alloy coating bath floated a fluoride-containing flux, thereby coating the steel material surface with aluminum alloy, or comprises removing an oxide layer on a steel material surface, adjusting surface roughness, conducting activating treatment and dipping the steel material in a molten Al--Zn--Si alloy or Al--Si alloy coating bath floated a flux added an iron component, thereby coating the steel material surface with Al--Zn--Si alloy or Al--Si alloy to adhere a large amount thereof and a aluminum alloy coating bath.
摘要:
In an electroplating container in which at least one portion of an inside surface of the container is formed from a metal material serving as cathode or anode and an anode or cathode is placed in the container, a composite electroplating liquid containing metal ions and fine solid particles is introduced into a bottom portion of the container in such a manner that the introduced composite electroplating liquid spouts downward against an inside bottom surface of the container and is allowed to flow upward through a flow path formed between the anode and the cathode, and an electric current is applied between the anode and cathode so as to form a composite electroplating layer including the fine solid particles evenly distributed in a metal matrix on a surface of the cathode or anode facing the flow path.
摘要:
A lubricating paint including a resin mix, a lubricant additive and silica. The resin mix consists of a urethane resin with molecular weight of over 3,000 and an epoxy resin, with the solids of the urethane resin accounting for 50-97 wt % of the solids of the resin mix. The lubricant additive accounts for 2-40 wt % of all of the solids in the lubricating paint. The silica accounts for 5-100 wt % of all of the resin solids in the lubricating paint. The lubricating paint of the invention exhibits improved formability, corrosion resistance (rust resistance) and lubricity as compared with prior art paints. It also has improved weldability, stain resistance and chemical resistance.
摘要:
In the cold rolling oils for steel sheets of the present invention, when 0.2-5% by weight of a high molecular nonionic surfactant having a molecular weight of 2000-15000 and an HLB value of 5-9, as well as 0.2-5% by weight of another nonionic surfactant having 12-16 HLB value, are incorporated with a cold rolling oil as emulsifying and dispersing agents, anti-coalescence of oil particles emulsified and dispersed are remarkably improved, and they are less affected by inclusion of iron powder so that excellent stability with time in an emulsified and dispersed state is obtained, as well as that its plateout is significantly improved. Further, the concentration of the resulting cold rolling oils does not decrease, even in case of weak stirring force, so that stable performance with time are obtained.In addition, when 0.1-10% by weight of an acetylene glycol nonionic surfactant is further incorporated with the above-described cold rolling oils for steel sheets of the invention, adverse effects due to inclusion of iron powder are safely avoided.
摘要:
A titanium-containing metallic material having a high heat-resistant and abrasion resistant surface is produced by (A) cleaning a titanium-containing metallic material, (B) first plating the cleaned surface of the metallic material with Cu or Ni by a strike or flash plating method, (C) second plating the first plated surface of the Ti-containing material with Ni, Ni-P alloy or a composite material comprising a Ni-P alloy matrix and fine ceramic particles dispersed in the matrix by an electroplating method, (D) non-oxidatively heat treating the second plated Ti-containing material at 450.degree. C. or more for one hour or more, (E) surface activating the second plated surface of the Ti-containing material, (F) coating the activated surface of the Ti-containing material with a heat and abrasion resistant coating layer comprising a matrix consisting of a Ni-P alloy or cobalt and fine ceramic particles dispersed in the matrix, and optionally, (G) surface-roughening the heat and abrasion-resistant coating layer surface of the Ti-containing material to a R.sub.Z of 1.0 to 10.0 .mu.m, and (H) coating the roughened surface of the Ti-containing material with a solid lubricant coating layer comprising at least one member selected from MoS.sub.2, graphite, boron nitride and F-containing polymer resin.
摘要:
The operation of zinc-nickel phosphate conversion coating of active metals is improved by using phosphating solutions containing formic acid or formate ions. Such solutions can work effectively at low temperatures and provide excellent substrates for paint, particularly that applied by electrodeposition.