Phase change memory and manufacturing method thereof
    11.
    发明授权
    Phase change memory and manufacturing method thereof 有权
    相变记忆及其制造方法

    公开(公告)号:US07709822B2

    公开(公告)日:2010-05-04

    申请号:US11771601

    申请日:2007-06-29

    Abstract: Both a chalcogenide select device and a chalcogenide memory element are formed within vias within dielectrics. As a result, the chalcogenides is effectively trapped within the vias and no glue or adhesion layer is needed. Moreover, delamination problems are avoided. A lance material is formed within the same via with the memory element. In one embodiment, the lance material is made thinner by virtue of the presence of a sidewall spacer; in another embodiment no sidewall spacer is utilized. A relatively small area of contact between the chalcogenide used to form a memory element and the lance material is achieved by providing a pin hole opening in a dielectric, which separates the chalcogenide and the lance material.

    Abstract translation: 在电介质内的通孔内形成硫族化物选择装置和硫族化物存储元件。 结果,硫属化物被有效地捕获在通孔内,并且不需要胶或粘合层。 此外,避免了分层问题。 在与存储元件相同的通孔内形成喷枪材料。 在一个实施例中,由于侧壁间隔物的存在,喷枪材料被制成更薄; 在另一个实施例中,没有使用侧壁间隔物。 用于形成记忆元件的硫族化物与喷枪材料之间的相对较小的接触面积通过在电解质中设置一个销孔开口来实现,该绝缘体分离硫族化物和喷枪材料。

    Microfluidic Device With Integrated Micropump, In Particular Biochemical Microreactor, And Manufacturing Method Thereof
    12.
    发明申请
    Microfluidic Device With Integrated Micropump, In Particular Biochemical Microreactor, And Manufacturing Method Thereof 有权
    具有集成微泵,特别是生物化学微反应器的微流体装置及其制造方法

    公开(公告)号:US20090214391A1

    公开(公告)日:2009-08-27

    申请号:US11914125

    申请日:2006-05-10

    Abstract: A microfluidic device for nucleic acid analysis includes a monolithic semiconductor body (13), a microfluidic circuit (10), at least partially accommodated in the monolithic semiconductor body (13), and a micropump (11). The microfluidic circuit (10) includes a sample preparation channel (18) formed on the monolithic semiconductor body (13) and at least one microfluidic channel (20, 22) buried in the monolithic semiconductor body (13). The micropump (11), includes a plurality of sealed chambers (40) provided with respective openable sealing elements (41) and having a first pressure therein that is different from a second pressure in the microfluidic circuit (10). In addition, the micropump (11) and the microfluidic circuit (10) are configured so that opening the openable sealing elements (41) provides fluidic coupling between the respective chambers (40) and the microfluidic circuit (10). The openable sealing elements (41) are integrated in the monolithic semiconductor body (13).

    Abstract translation: 用于核酸分析的微流体装置包括至少部分地容纳在单片半导体本体(13)中的单片半导体本体(13),微流体电路(10)和微型泵(11)。 微流体回路(10)包括形成在单片半导体本体(13)上的样品制备通道(18)和埋在单片半导体本体(13)中的至少一个微流体通道(20,22)。 微型泵(11)包括多个密封室(40),其设置有相应的可开启的密封元件(41),并且其中具有与微流体回路(10)中的第二压力不同的第一压力。 此外,微型泵(11)和微流体回路(10)被构造成使得可打开的密封元件(41)的打开在相应的腔室(40)和微流体回路(10)之间提供流体耦合。 可打开的密封元件(41)集成在单片半导体本体(13)中。

    Treatment of Biological Samples Using Dielectrophoresis
    13.
    发明申请
    Treatment of Biological Samples Using Dielectrophoresis 有权
    使用电泳法处理生物样品

    公开(公告)号:US20070125650A1

    公开(公告)日:2007-06-07

    申请号:US11531679

    申请日:2006-09-13

    CPC classification number: B03C5/026

    Abstract: A plurality of planar electrodes (5) in a microchannel (4) is used for separation, lysis and PCR in a chip (10). Cells from a sample are brought to the electrodes (5). Depending on sample properties, phase pattern, frequency and voltage of the electrodes and flow velocity are chosen to trap target cells (16) using DEP, whereas the majority of unwanted cells (17) flushes through. After separation the target cell (16) are lysed while still trapped. Lysis is carried out by applying RF pulses and/or thermally so as to change the dielectric properties of the trapped cells. After lysis, the target cells (16) are amplified within the microchannel (4), so as to obtain separation, lysis and PCR on same chip (1).

    Abstract translation: 微通道(4)中的多个平面电极(5)用于芯片(10)中的分离,裂解和PCR。 来自样品的细胞被带到电极(5)。 根据样品性质,选择电极的相图,频率和电压以及流速,以使用DEP捕获靶细胞(16),而大多数不需要的细胞(17)冲洗通过。 分离后,靶细胞(16)裂解,同时仍被捕获。 通过施加RF脉冲和/或热来进行裂解以改变被捕获的细胞的介电性质。 裂解后,在微通道(4)内扩增靶细胞(16),以在同一芯片(1)上获得分离,裂解和PCR。

    Shaped spectral coding and recording systems therefor
    14.
    发明授权
    Shaped spectral coding and recording systems therefor 有权
    形状的光谱编码和记录系统

    公开(公告)号:US07203884B2

    公开(公告)日:2007-04-10

    申请号:US10409634

    申请日:2003-04-07

    Abstract: In the MSN encoded form, the symbols of each block of the present invention define a running digital sum (RDS) value, defined as RDS([a0a1 . . . aN−1])=−Σi(−1)ai where the symbols ai belong to the set {0, 1} and the sum extends for values of i from 0 to N−1. An encoder is configured to satisfy at least one of the following characteristics: a) blocks of symbols with a given length (L) are used for encoding, wherein RDS=RDS0+4.K, where K is an integer, RDS is the said running digital sum, RDS0 is defined as zero for even values of the said length (L), and one for odd values of said length (L), and b) blocks of symbols with a given length (L) are used for MSN coding and encoding is effected by selecting encoded blocks such that the set of running digital sum (RDS) values is the set with the minimum number of elements that satisfy the required rate value, defined as the ratio between the length of the input blocks and the length of the output blocks. A decoder with a simplified trellis structure is used for decoding (as in decoding a digital signal read from media on which the signal in question has been recorded via a vertical or perpendicular magnetic recording technique, for example).

    Abstract translation: 在MSN编码形式中,本发明的每个块的符号定义了一个运行的数字和(RDS)值,被定义为RDS([a]> 1 (1-N-1))= - Sigma(i-1)其中符号a < SUB> i 属于集合{0,1},并且对于从0到N-1的i的值扩展。 编码器被配置为满足以下特征中的至少一个:a)具有给定长度(L)的符号块用于编码,其中RDS = RDS <0> + 4K,其中K 是整数,RDS是所述运行的数字和,对于所述长度(L)的偶数值,RDS <0> <0>定义为零,而对于所述长度(L)的奇数值而言,RDS < )具有给定长度(L)的符号块用于MSN编码,并且通过选择编码块来实现编码,使得该组运行数字和(RDS)值是具有满足所需速率的元素的最小数量的集合 值,定义为输入块的长度与输出块的长度之间的比率。 具有简化网格结构的解码器被用于解码(例如在解码从通过垂直或垂直磁记录技术记录了所述信号的介质读取的数字信号时)。

Patent Agency Ranking