Quantum annealing with oscillating fields

    公开(公告)号:US11106980B2

    公开(公告)日:2021-08-31

    申请号:US16759595

    申请日:2018-10-25

    发明人: Eliot Kapit

    IPC分类号: G06N5/00 G06N10/00

    摘要: Embodiments herein implement quantum annealing with a driver Hamiltonian that uses oscillating fields to advantageously obtain a quantum speedup over classical computing techniques. For a many-body quantum system formed with qubits, the oscillating fields drive the qubits so as to independently modulate the magnitudes and/or directions of transverse terms of the driver Hamiltonian. In particular, embodiments provide a quantum speedup for two types of first-order phase transitions: the paramagnet-to-spin-glass transition, and transitions between distinct “bit string” states. The resulting speedup is robust against energy fluctuations (e.g., 1/f noise), in contrast to other strategies like variable-rate annealing. Each oscillating field may be an oscillating electric field or magnetic field. The oscillating fields can be implemented with superconducting flux qubits by coupling oscillating fluxes and/or voltages to the flux qubits.

    Immunogenic peptide composition and method

    公开(公告)号:US10537634B2

    公开(公告)日:2020-01-21

    申请号:US16176743

    申请日:2018-10-31

    摘要: Immunogenic influenza hemagglutinin-derived peptide compositions described herein induce a specific therapeutic antibody response against influenza virus. The immunogenic peptide compositions comprise a segment from the fusion initiation region (FIR) domain of an influenza hemagglutinin protein bound to an immunogenic carrier protein, such as an influenza hemagglutinin (HA) protein (i.e., full length HA), and the like. The immunogenic peptide compositions described herein can be utilized to treat or prevent influenza infection and to prepare influenza-specific therapeutic antibodies that interfere with influenza virus-host cell membrane fusion. The peptide conjugates can be formulated in pharmaceutical compositions useful for broad spectrum treatment or prevention of influenza infections.

    Transmissive Concentrated Photovoltaic Module with Cooling System

    公开(公告)号:US20190115869A1

    公开(公告)日:2019-04-18

    申请号:US16089294

    申请日:2017-03-28

    摘要: A spectrum splitting, transmissive concentrating photovoltaic (tCPV) module is proposed and designed for a hybrid photovoltaic-solar thermal (PV/T) system. The system may be able to fully utilize the full spectrum of incoming sunlight. By utilizing III-V triple junction solar cells with bandgaps of approximately 2.1 eV, 1.7 eV, and 1.4 eV in the module, ultraviolet (UV) and visible light (in-band light) are absorbed and converted to electricity, while infrared (IR) light (out-of-band light) passes through and is captured by a solar thermal receiver and stored as heat. The stored heat energy may be dispatched as electricity or process heat as needed. The tCPV module may have an overall power conversion efficiency exceeding 43.5% for above bandgap (in-band) light under a standard AM1.5D solar spectrum with an average concentration ratio of 400 suns. Passive and/or active cooling methods may be used to keep cells below 110° C. while transmitting >75% of out-of-band light to the thermal receiver, which may attain thermal energy capture at temperatures as high as 500° C. or more. A transparent active cooling system may improve the CPV module efficiency by about 1% (absolute) relative to a passive cooling system by reducing the maximum cell working temperature by about 16° C.