Abstract:
System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.
Abstract:
Techniques are described for managing states of an object using a finite-state machine. The states may be used to indicate whether an object has been added, removed, requested or updated. Embodiments of the invention generally include dividing a process into at least two threads where a first thread changes the state of the object while the second thread performs the processing of the data found in the object. While the second thread is processing the data, the first thread may receive additional updates and change the states of the objects to inform the second thread that it should process the additional updates when the second thread becomes idle.
Abstract:
A fiber sensor package is disclosed. The fiber sensor package includes an interconnection between a first optical fiber and a second optical fiber within a tubing such that the first and second optical fibers are at least partially disposed within that tubing. A bonding material is disposed across an edge of the interconnection around at least a part of the circumferential surfaces of the first and second fibers, holds rigid the interconnection of the first and second optical fibers. The methods of preparing the package, and the examples of systems benefiting from the fiber sensor package of this invention are also described.
Abstract:
A fiber sensor package is disclosed. The fiber sensor package includes an interconnection between a first optical fiber and a second optical fiber within a tubing such that the first and second optical fibers are at least partially disposed within that tubing. A bonding material is disposed across an edge of the interconnection around at least a part of the circumferential surfaces of the first and second fibers, holds rigid the interconnection of the first and second optical fibers. The methods of preparing the package, and the examples of systems benefiting from the fiber sensor package of this invention are also described.
Abstract:
A computer system independently maintains states of multiple condition indicators as logical state data, each indicator for a different respective condition and having at least an active and inactive state. Multiple condition indicators share a single human-perceptible physical indicator having at least (N+1) states, where N is the number of condition indicators, the physical indicator states including a state for all conditions inactive, and a respective separate state for each respective condition active. Preferably, the conditions comprise a fault condition and an identify condition, and the physical indicator is a light which is off if neither condition is active, is constant on if the fault condition is active, and is flashing if the identify condition is active.
Abstract:
A method for dynamically controlling a multiple input, multiple output (MIMO) system having multiple input and output constraints, the method comprising. In an exemplary embodiment, the method includes configuring a MIMO tracking controller to implement closed loop tracking of multiple control reference inputs of the system, in the absence of input and output constraints, and configuring a MIMO constraint controller to enforce the input and output constraints of the MIMO system by generating a reference modification applied to the multiple control reference inputs.
Abstract:
A method and system for online power management of a turbine engine is provided. The method includes operating an engine control system on a first bandwidth, filtering at least one data input from the engine control system to a second bandwidth, and receiving, by a power management system operating on the second bandwidth, the at least one filtered data input. The method also includes predicting an engine operating condition using the at least one filtered data input using a closed-loop engine model, determining an optimal engine power management based on the prediction, solving a constrained optimization for a desired optimization objective, and outputting the optimal engine power management to the engine control system.
Abstract:
Performance impact of a computing system component on a transient end-to-end system operation is estimated by profiling an overall characteristic for a transient end-to-end system operation, and simultaneously profiling a program code component for a second characteristic, thereby collecting a first pair of data points, repeating the operational period while introducing a known artificial delay into the program code component, and while profiling the overall performance characteristic for the system and for the program code component, thereby collecting pairs of data points for each repetition of the operational period for each of the artificial delays; curve fitting and analyzing intercepts of the collected data points to estimate the effect of the artificial delays in the program code component on the transient end-to-end system operation; and reporting the estimate correlated to potential optimal transient end-to-end system operation.
Abstract:
Method, apparatus and system are described for converting received timestamps to a time-recording standard recognized by the receiving computing system. Embodiments of the invention generally include receiving data from an external device that includes a timestamp. If the received data is the first communication from the external device, creating a time base used for converting subsequently received timestamps to a recognized standard. Moreover, the system updates the time base if a counter failure at the external device is detected. When the external device transmits subsequent data, the time base is added to the subsequently received timestamps to convert the subsequent timestamps to a time-recording standard recognized by the computing system.
Abstract:
A method and system for online power management of a turbine engine is provided. The method includes operating an engine control system on a first bandwidth, filtering at least one data input from the engine control system to a second bandwidth, and receiving, by a power management system operating on the second bandwidth, the at least one filtered data input. The method also includes predicting an engine operating condition using the at least one filtered data input using a closed-loop engine model, determining an optimal engine power management based on the prediction, solving a constrained optimization for a desired optimization objective, and outputting the optimal engine power management to the engine control system.