Abstract:
A CMOS device includes NMOS (110) and PMOS (130) transistors, each of which include a gate electrode (111, 131) and a gate insulator (112, 132) that defines a gate insulator plane (150, 170). The transistors each further include source/drain regions (113/114, 133/134) having a first portion (115, 135) below the gate insulator plane and a second portion (116, 136) above the gate insulator plane, and an electrically insulating material (117). The NMOS transistor further includes a blocking layer (121) having a portion (122) between the gate electrode and a source contact (118) and a portion (123) between the gate electrode and a drain contact (119). The PMOS transistor further includes a blocking layer (141) having a portion (142) between the source region and the insulating material and a portion (143) between the drain region and the insulating material.
Abstract:
A transistor structure that increases uniaxial compressive stress on the channel region of a tri-gate transistor comprises at least two semiconductor bodies formed on a substrate, each semiconductor body having a pair of laterally opposite sidewalls and a top surface, a common source region formed on one end of the semiconductor bodies, wherein the common source region is coupled to all of the at least two semiconductor bodies, a common drain region formed on another end of the semiconductor bodies, wherein the common drain region is coupled to all of the at least two semiconductor bodies, and a common gate electrode formed over the at least two semiconductor bodies, wherein the common gate electrode provides a gate electrode for each of the at least two semiconductor bodies and wherein the common gate electrode has a pair of laterally opposite sidewalls that are substantially perpendicular to the sidewalls of the semiconductor bodies.
Abstract:
The invention relates to a transistor that includes an ultra-thin body epitaxial layer that forms an embedded junction with a channel that has a length dictated by an undercut under the gate stack for the transistor. The invention also relates to a process of forming the transistor and to a system that incorporates the transistor.
Abstract:
A method to form a strain-inducing three-component epitaxial film is described. In one embodiment, the strain-inducing epitaxial film is formed by formed by a multiple deposition/etch step sequence, followed by an amorphizing dopant impurity-implant and, finally, a kinetically-driven crystallization process. In one embodiment, the charge-neutral lattice-substitution atoms are smaller and present in greater concentration than the charge-carrier dopant impurity atoms.
Abstract:
Various embodiments of the invention relate to a PMOS device having a transistor channel of silicon germanium material on a substrate, a gate dielectric having a dielectric constant greater than that of silicon dioxide on the channel, a gate electrode conductor material having a work function in a range between a valence energy band edge and a conductor energy band edge for silicon on the gate dielectric, and a gate electrode semiconductor material on the gate electrode conductor material.
Abstract:
Microelectronic structures embodying the present invention include a field effect transistor (FET) having highly conductive source/drain extensions. Formation of such highly conductive source/drain extensions includes forming a passivated recess which is back filled by epitaxial deposition of doped material to form the source/drain junctions. The recesses include a laterally extending region that underlies a portion of the gate structure. Such a lateral extension may underlie a sidewall spacer adjacent to the vertical sidewalls of the gate electrode, or may extend further into the channel portion of a FET such that the lateral recess underlies the gate electrode portion of the gate structure. In one embodiment the recess is back filled by an in-situ epitaxial deposition of a bilayer of oppositely doped material. In this way, a very abrupt junction is achieved that provides a relatively low resistance source/drain extension and further provides good off-state subthreshold leakage characteristics. Alternative embodiments can be implemented with a back filled recess of a single conductivity type.
Abstract:
A method is described for manufacturing an n-MOS semiconductor transistor. Recesses are formed in a semiconductor substrate adjacent a gate electrode structure. Silicon is embedded in the recesses via a selective epitaxial growth process. The epitaxial silicon is in-situ alloyed with substitutional carbon and in-situ doped with phosphorus. The silicon-carbon alloy generates a uniaxial tensile strain in the channel region between the source and drain, thereby increasing electron channel mobility and the transistor's drive current. The silicon-carbon alloy decreases external resistances by reducing contact resistance between source/drain and silicide regions and by reducing phosphorous diffusivity, thereby permitting closer placement of the transistor's source/drain and channel regions.
Abstract:
The invention relates to a process of forming a bipolar junction transistor (BJT) that includes forming a topology over a substrate. Thereafter, a spacer is formed at the topology. A base layer is formed from epitaxial silicon above the spacer and at the topology. A leakage block structure is formed in the substrate by out-diffusion from the spacer. Thereafter a BJT is completed with the base layer and the spacer.
Abstract:
Methods and associated apparatus of forming a microelectronic structure are described. Those methods comprise providing a substrate comprising a region of higher active area density comprising source and drain recesses and a region of lower active area density comprising source and drain recesses, wherein the region of lower active area density further comprises dummy recesses, and selectively depositing a silicon alloy layer in the source, drain and dummy recesses to enhance the selectivity and uniformity of the silicon alloy deposition.
Abstract:
A bipolar transistor and its fabrication are described. The extrinsic base region is formed by growing a second, more heavily doped, epitaxial layer over a first epitaxial layer. The second layer extends under, and is insulated from, an overlying polysilicon emitter pedestal.