Abstract:
A fluorescent lamp including a phosphor layer comprising a phosphor blend including four or more optimized phosphors emitting within a specific spectral range to optimize luminosity for a given color rendering index (CRI) and color coordinated temperature (CCT). The blend will include at least four phosphors selected from the following: a blue phosphor having an emission peak at 440–490 nm, a blue-green phosphor having an emission peak at 475–525 nm, a green phosphor having an emission peak at 515–550 nm, an orange phosphor having an emission peak from 550–600 nm, a deep red phosphor having an emission peak at 615–665 nm, and a red phosphor having an emission peak at 600–670 nm.
Abstract:
A method for making a phosphor composition is provided. The method includes the steps of providing a first phosphor comprising a visible-light-emitting phosphor; providing a second phosphor having an average primary crystallite size of less than about 100 nm and disposing the second phosphor onto to the first phosphor. The second phosphor includes at least one phosphor selected from a group consisting of a visual light emitting phosphor, ultraviolet (VUV) light emitting phosphor and a quantum splitting phosphor.
Abstract:
An edge lit illumination system is directed to providing backlighting utilizing a luminescent impregnated lightguide. The apparatus includes an LED radiation source providing a first radiation and a lightguide optically coupled to the LED radiation source including a luminescent material embedded or coated on an output surface of the lightguide designed to absorb the first radiation, and emit one or more radiations. The illumination system may further include additional optical components such as reflective layers, for directing radiation striking the back surfaces of the light guide back into the lightguide, as well as diffusion layers, UV reflectors, and polarizers.
Abstract:
Disclosed are phosphor compositions doped with both Ce3+ and Eu2+ and light emitting devices including a semiconductor light source and the above phosphor. Also disclosed are phosphor blends of the above phosphors and one ore more additional phosphors and white light emitting devices incorporating the same. The preferred blends are used to make light sources with CRI values greater than 90 at any CCT from about 2500 to 8000 K.
Abstract:
Phosphor compositions having the formula (Ba,Sr,Ca)SiO4:Eu and light emitting devices including a semiconductor light source and the above phosphor. Also disclosed are blends of (Ba,Sr,Ca)SiO4:Eu and one or more additional phosphors and light emitting devices incorporating the same. Preferred blends include (Sr,Ba,Ca)2SiO4:Eu and at least one of (Sr,Mg,Ca,Ba,Zn)2P2O7:Eu,Mn; (Ca,Sr,Ba,Mg)5(PO4)3(Cl,F,OH):Eu,Mn; (Sr,Ba,Ca)MgAl10O17:Eu,Mn; and Mg4FGeO6:Mn4+; and one or more garnet phosphors having the general formula (Y,Gd,La,Lu,T,Pr,Sm)3(Al,Ga,In)5O12:Ce.
Abstract translation:具有式(Ba,Sr,Ca)SiO 4:Eu的荧光体组合物和包括半导体光源和上述荧光体的发光器件。 还公开了(Ba,Sr,Ca)SiO 4:Eu与一种或多种另外的荧光体和掺入其的发光器件的掺合物。 优选的共混物包括(Sr,Ba,Ca)2 SiO 4:Eu和(Sr,Mg,Ca,Ba,Zn)2中的至少一种, Eu,Mn; N 2 O 3: (Ca,Sr,Ba,Mg)5(PO 4)3(Cl,F,OH):Eu,Mn; (Sr,Ba,Ca)MgAl 10 O 17:Eu,Mn; 和Mg 4 F 6 O 6:Mn 4+; 和一种或多种具有通式(Y,Gd,La,Lu,T,Pr,Sm)3(Al,Ga,In)的石榴石磷光体 Ce。
Abstract:
A phosphor comprises: (a) at least a first metal selected from the group consisting of yttrium and elements of lanthanide series other than europium; (b) at least a second metal selected from the group consisting of aluminum, gallium, indium, and scandium; (c) boron; and (d) europium. The phosphor is used in light source that comprises a UV radiation source to convert UV radiation to visible light.
Abstract:
A lighting apparatus (10) comprises a light engine (12) producing ultra violet radiation. An enclosure (14) surrounds a radiation generating area of the light engine (12) to encompass the radiation. At least one wall (28) of the enclosure (14) is substantially reflective of the ultraviolet radiation. The enclosure (14) includes a replaceable top portion (30) which includes a phosphor portion (32). The phosphor portion (32) is spaced from the radiation generating area of the light engine (12) by a height of the enclosure (14).
Abstract:
A light emitting apparatus including a phosphor blend including two or more phosphors to provide an emission spectrum simulating the spectral power distribution of a CIE reference illuminant across at least a certain spectral range. Such an apparatus is particularly suited for color-critical applications.
Abstract:
Disclosed are phosphor compositions having the formulas Ca1−a−bCeaEubAl1+aSi1−aN3, where 0 0; and Ca1−g−h−iCeg(Li,Na)hEuiAl1+g−hSi1−g+hN3 where 0≦g≦0.2, 0 0. When combined with radiation from a blue or UV light source, these phosphors can provide light sources with good color quality having high CRI over a large color temperature range. Also disclosed are blends of the above phosphors and additional phosphors.
Abstract:
Light emitting devices including a light source and a phosphor material including a complex fluoride phosphor activated with Mn4+ which may comprise at least one of (1) A2[MF6]:Mn4+, where A is selected from Li, Na, K, Rb, Cs, NH4, and combinations thereof; and where M is selected from Ge, Si, Sn, Ti, Zr, and combinations thereof; (2) E[MF6]:Mn4+, where E is selected from Mg, Ca, Sr, Ba, Zn, and combinations thereof; and where M is selected from Ge, Si, Sn, Ti, Zr, and combinations thereof; (3) Ba0.65Zr0.35F2.70:Mn4+; or (4) A3[ZrF7]:Mn4+ where A is selected from Li, Na, K, Rb, Cs, NH4, and combinations thereof.