Abstract:
Each daisy chain circuit is serially connected to the two adjacent neuron circuits, so that all the neuron circuits form a chain. The daisy chain circuit distinguishes between the two possible states of the neuron circuit (engaged or free) and identifies the first free "or ready to learn" neuron circuit in the chain, based on the respective values of the input (DCI) and output (DCO) signals of the daisy chain circuit. The ready to learn neuron circuit is the only neuron circuit of the neural network having daisy chain input and output signals complementary to each other. The daisy chain circuit includes a 1-bit register (601) controlled by a store enable signal (ST) which is active at initialization or, during the learning phase when a new neuron circuit is engaged. At initialization, all the Daisy registers of the chain are forced to a first logic value. The DCI input of the first daisy chain circuit in the chain is connected to a second logic value, such that after initialization, it is the ready to learn neuron circuit. In the learning phase, the ready to learn neuron's 1-bit daisy register contents are set to the second logic value by the store enable signal, it is said "engaged". As neurons are engaged, each subsequent neuron circuit in the chain then becomes the next ready to learn neuron circuit.
Abstract:
A self-synchronising data bus analyser comprising a generator LFSR, a receiver LFSR and a comparator wherein the generator LFSR generates a first data set which is transmitted through a data bus to the comparator; and wherein the comparator compares the first data set with a second data set generated by the receiver LFSR and adjusts the receiver LFSR until the second data set is substantially the same as the first data set.
Abstract:
The improved neuron is connected to input buses which transport input data and control signals. It basically consists of a computation block, a register block, an evaluation block and a daisy chain block. All these blocks, except the computation block substantially have a symmetric construction. Registers are used to store data: the local norm and context, the distance, the AIF value and the category. The improved neuron further needs some R/W memory capacity which may be placed either in the neuron or outside. The evaluation circuit is connected to an output bus to generate global signals thereon. The daisy chain block allows to chain the improved neuron with others to form an artificial neural network (ANN). The improved neuron may work either as a single neuron (single mode) or as two independent neurons (dual mode). In the latter case, the computation block, which is common to the two dual neurons, must operate sequentially to service one neuron after the other. The selection between the two modes (single/dual) is made by the user which stores a specific logic value in a dedicated register of the control logic circuitry in each improved neuron.
Abstract:
A method for approximating mathematical functions using polynomial expansions is implemented in a numeric processing system. A partial remainder operation is set forth for high accuracy reduction of polynomials whose arguments are greater than pi/4. The method may be practiced in a processor having a bus of approximately half the width of the precision of the desired result. Temporary registers are utilized for the storage of intermediate results. Full bus width accuracy is obtained through successive half bus width operations.
Abstract:
A numeric data coprocessor having an execution unit adapted to efficiently execute addition/subtraction operations on floating-point numbers in compliance with the IEEE standard 754. The mantissa adder carry out bit resulting from the operation on two operands X and Y is directly concatenated with the mantissa adder result in the mantissa output register to be the MSB thereof. Simultaneously, a 1 is added to the exponent of operand X or Y with the highest value. The final result is found after normalizing, regardless of whether the carry out bit is 1 or 0.In its hardware embodiment, taking for example the 80-bit double extended precision IEEE format, the mantissa output register has 68 positions. The 68th supplementary position is fed by the carry out bit generated by the mantissa adder at the "carry out" output. The "Force Carry" input of the exponent adder is activated by the control logic circuitry to add a 1 to the operand exponent with the highest value.