Abstract:
A system and method for balancing flows of renal replacement fluid is disclosed. The method uses pressure controls and pressure sensing devices to more precisely meter and balance the flow of fresh dialysate and spent dialysate. The balancing system may use one or two balancing devices, such as a balance tube, a tortuous path, or a balance chamber.
Abstract:
This invention provides a medical device for delivering volumetric quantities of a first and a second biochemically reactive fluid in which separate MBUs atomize the fluids. The device of the present invention includes a fluid delivery device for laparoscopically delivering fluids having two feed conduits for delivering fluid to feed ports of the mechanical breakup units, the mechanical breakup units having two feed ports for receiving fluid from the feed conduits and directing such fluid into spin chambers and funneling portions having a sloped sidewall for directing fluid from the spin chambers through an exit port. The device is suitably dimensioned for creating a spray of two fluids with different viscosities such as fibrinogen and thrombin in such a manner that the thrombin spray cone encompasses the fibrinogen spray cone at a distance of about one inch from the exit port with a 0.5 cc/second flow rate to avoid depositing unreacted fibrinogen on a surface. Other instruments such as optical fibers may be incorporated within the device.
Abstract:
This invention provides a medical device for delivering volumetric quantities of a first and a second biochemically reactive fluid comprising a first container having an opening, the first container being adapted to contain the first biochemically reactive fluid; a second container having a second fluid opening adjacent the first fluid opening, the second container being adapted to contain the second biochemically reactive fluid; a spray unit for separately atomizing the first and second biochemically reactive fluids into an aerosol with at least one energy source of a liquid energy, a mechanical energy, a vibration energy, and an electric energy; a fluid pressurizer for pressurizing the first and the second biochemically reactive fluids for delivery under pressure through the spray unit onto a surface; and wherein the first and second biochemically reactive fluids first mix on the surface.
Abstract:
An applicator for mixing and applying multi-component compositions to a work surface, such as two-component surgical sealants. A luer hub sub-assembly having a proximal hub and a distal hub, an elongate, four-lumened cannula, and a spray tip sub-assembly are provided, with interconnections between the sub-assemblies preserving isolation of the fluid components from one another. The tip cap sub-assembly includes registration structure to assure proper alignment between tip cap and tip insert. The end wall of the tip cap includes a spinner region with three feeders or feeder channels leading thereto, the fluid components remaining isolated from one another in two of the feeders or feeder channels, and initiating mixing with one another in a third of the feeders or feeder channels.
Abstract:
An applicator for mixing and applying multi-component compositions to a work surface, such as two-component surgical sealants, while avoiding clogs, preventing cross-contamination of the components until a point of intended mixing at a location within the apparatus immediately upstream of an application opening in a tip cap, decreasing pressure drop along the applicator to facilitate fluid delivery, and increasing efficiency of mixing of the components. A luer hub sub-assembly having a proximal hub and a distal hub, an elongate, four-lumened cannula, and a spray tip sub-assembly are provided, with interconnections between the sub-assemblies preserving isolation of the fluid components from one another. The tip cap sub-assembly includes registration structure to assure proper alignment between tip cap and tip insert. The end wall of the tip cap includes a spinner region with three feeders leading thereto, the fluid components remaining isolated from one another in two of the feeders, and initiating mixing with one another in a third of the feeders.
Abstract:
A dialysis fluid system includes an instrument including a pump actuator and a fluid heater, and a dialysis fluid cassette. The dialysis fluid cassette includes a rigid portion defining a pumping section for operation with the pump actuator and a heating section for operation with the fluid heater. The heating section includes a dialysis fluid inlet, a dialysis fluid outlet, and a dialysis fluid heating area located between the fluid inlet and the fluid outlet, the heating section further includes an air separation chamber for collecting air separated from the dialysis fluid.
Abstract:
A medical fluid air detection apparatus includes an emitter, a receiver, a housing configured to hold at least a portion of a medical fluid conduit between the emitter and the receiver, where the medical fluid conduit includes a narrowed inner diameter at the medical fluid conduit portion that forces flow of medical fluid through the narrowed diameter, and where the narrowed diameter is configured to enhance operation of the emitter and the receiver.
Abstract:
A dialysis system includes a dialysis fluid disposable configured to hold and transport a dialysis fluid; an air separation chamber in fluid communication with the dialysis fluid disposable; and a dialysis instrument operable to pump dialysis fluid through the dialysis fluid disposable, the instrument including a vibrator configured to vibrate the air separation chamber to separate air from the dialysis fluid traveling through the chamber.
Abstract:
A dialysis fluid cassette includes a rigid portion defining at least one valve chamber, the rigid portion further defining an air separation chamber, the air separation chamber when in an operating position including an inner surface, a fluid inlet and a fluid outlet and configured to cause a dialysis fluid to spiral around the inner surface toward the fluid outlet, such that air is removed from the dialysis fluid.
Abstract:
A dialysis fluid cassette includes a rigid portion defining first and second valve chambers, the rigid portion further defining an air separation chamber in fluid communication with the first and second valve chambers, the air separation chamber including a baffle and structured such that when the cassette is placed in a dialysis instrument, (i) the baffle extends upwardly from a bottom of the air separation chamber and (ii) first and second openings to the air separation chamber, communicating fluidly and respectively with the first and second valve chambers, are located near the bottom of the air separation chamber, such that the dialysis fluid is forced up one side of the baffle and down the other side of the baffle when flowing through the air separation chamber.