Abstract:
A thin film transistor includes a substrate, a semiconductor layer on the substrate, a thermal oxide layer on the semiconductor layer, a gate electrode on the thermal oxide layer, the gate electrode positioned to correspond to a channel region of the semiconductor layer, an interlayer insulating layer on the substrate, and source and drain electrodes electrically connected to the semiconductor layer.
Abstract:
A non-volatile memory device is capable of reducing an excessive leakage current due to a rough surface of a polysilicon and of realizing improved blocking function by forming the first oxide film including a silicon oxy-nitride (SiOxNy) layer using nitrous oxide (N2O) plasma, and by forming silicon-rich silicon nitride film, and a fabricating method thereof and a memory apparatus including the non-volatile memory device. Further, the non-volatile memory device can be fabricated on the glass substrate without using a high temperature process.
Abstract translation:非易失性存储器件能够减少由多晶硅的粗糙表面引起的过大的漏电流,并且通过形成包括氮氧化硅(SiO 2)的第一氧化物膜,实现改进的阻挡功能, 使用一氧化二氮(N 2 O 3)等离子体,并且通过形成富硅的氮化硅膜,以及其制造方法和包括非氧化氮(N 2 O 3) 易失存储器件。 此外,可以在不使用高温处理的情况下在玻璃基板上制造非易失性存储器件。
Abstract:
A method of fabricating a thin film transistor includes forming an active layer on an insulating substrate; forming a gate insulation film on the insulating substrate; forming source, drain, and body contact regions which are separated by a channel region in the active layer; forming a gate on the gate insulation film; forming an interlayer insulation film on the insulating substrate; and forming source and drain electrodes electrically connected with the source and drain regions, respectively, wherein a voltage is applied to the channel region of the active layer through the body contact region, and the body contact region is connected to the source or drain electrode.
Abstract:
A TFT including a gate metallic layer, a body layer doped with a dopant having a first polarity, a source layer and a drain layer doped with a dopant having a second polarity, a semiconductor layer formed between the source layer and the drain layer, and a contact coupling the gate metallic layer and the body layer.
Abstract:
A thin film transistor of the present invention comprises, an active layer formed on an insulating substrate and having a channel region and source/drain regions; a gate electrode formed corresponding to the channel region of the active region; a body contact region separately formed with the source/drain regions in the active layer; source/drain electrodes each connected to the source/drain regions; and a conductive wiring for connecting the body contact region and the gate electrode.
Abstract:
A high-speed flat panel display having a long lifetime. Thin film transistors in a pixel portion having a plurality of pixels are contacted differently from thin film transistors in driving circuit portions for driving the pixels, thereby enhancing luminance uniformity and reducing power consumption. The thin film transistors each have a channel region and a body contact region for applying a predetermined voltage to the channel region. At least one thin film transistor in the pixel portion is a source-body contact thin film transistor having the body contact region connected to one of source and drain electrodes so that the predetermined voltage can be provided to the channel region. Each thin film transistor in the driving circuit portion is a gate-body contact thin film transistor having the body contact region connected to the gate electrode so that a predetermined voltage can be provided to the channel region.
Abstract:
An insulating layer having a BPSG layer, a semiconductor device and methods for fabricating them. After preparing an oxidizing atmosphere using an oxygen gas, a first seed layer is formed with a tetraethylorthosilicate (TEOS) and the oxygen gas. Thereafter, a second seed layer, used to form an insulating layer capable of controlling an amount of a boron, is formed by means of using a triethylborate (TEB), the TEOS and the oxygen gas. Then, the insulating layer having a BPSG layer is formed using the TEB, a triethylphosphate, the TEOS and an ozone gas. About 5.25 to 5.75% by weight of the boron and about 2.75 to 4.25% by weight of the phosphorous are added to the insulating layer.
Abstract:
A method of fabricating a thin film transistor includes forming an active layer on an insulating substrate; forming a gate insulation film on the insulating substrate; forming source, drain, and body contact regions which are separated by a channel region in the active layer; forming a gate on the gate insulation film; forming an interlayer insulation film on the insulating substrate; and forming source and drain electrodes electrically connected with the source and drain regions, respectively, wherein a voltage is applied to the channel region of the active layer through the body contact region, and the body contact region is connected to the source or drain electrode.
Abstract:
A thin film transistor (TFT), a method of fabricating the same, and a display device including the TFT, are provided. In the TFT, a channel region is connected to a gate electrode so that the influence of a substrate bias is reduced or eliminated. Thus, the threshold voltage of the TFT is reduced, a subthreshold slope can be improved, and a large drain current can be obtained at a low gate voltage.
Abstract:
A nonvolatile memory device may include a substrate, a semiconductor layer on the substrate, and including a source region, a drain region having a relatively shallower impurity injection region than that of the source region and a channel region disposed between the source and drain regions, a first gate insulating layer on the semiconductor layer, and having regions corresponding to the source and drain regions thinner than a region corresponding to the channel region, and a first gate electrode, a second gate insulating layer, and a second gate electrode which are disposed on the first gate insulating layer. An organic light emitting display device (OLED) may include the nonvolatile memory device.