Abstract:
A structure for encapsulating a liquid crystal display device is disclosed. Openings are formed in a second material layer on a first substrate, exposing an underlying first material layer. The openings are substantially distributed over the perimeter of the first substrate. A sealant is placed in the openings, forming a sealant region for attachment of a second substrate to the first substrate. The sealant region is substantially perpendicular to a direction of length of the openings. In addition, the sealant contacts the first material layer and the second material layer through the openings.
Abstract:
A simplified peritoneal equilibration test (S-PET) is disclosed. Instead of a lengthy peritoneal equilibration test (PET), the simplified procedure requires no blood sample and may use data from as few as two or three samples to classify a peritoneal membrane of a user. Typically, a peritoneal membrane or peritoneum of a dialysis patient, or other person, is classed as a high transport membrane, high-average transport membrane, a low-average transport membrane or a low transporter membrane. The S-PET may be performed at home by a user without the need to submit a blood sample. Kits for analyzing the samples may be furnished for home use. The kits may use disposable strips, microfluidic analyzers or chemical reagents, or may alternatively include reusable analysis equipment, such as optical or conductivity analysis equipment.
Abstract:
Dialysis treatment devices and methods for removing urea from dialysis waste streams are provided. In a general embodiment, the present disclosure provides a dialysis treatment device including: 1) a first filter having a filtration membrane, 2) a urea removal unit having urease and in fluid communication with the first filter, and 3) a second filter having an ion rejection membrane and in fluid communication with the first filter and the urea removal unit.
Abstract:
An image compression method includes: inputting an original image data and performing a specific transform operation upon the original image data to generate a transformed image data; performing a quantization operation upon the transformed image data according to a quantization table to generate a quantized image data; encoding the quantized image data to generate a compressed image data; and calculating a data amount corresponding to the compressed image data and accordingly determining whether to adjust the quantization table according to the data amount.
Abstract:
A method of modeling a patient's peritoneal dialysis drain phase includes (i) modeling a first segment of a drain phase curve as having a constant flowrate; (ii) modeling a second segment of a drain phase curve as having a decaying exponential flowrate; and (iii) incorporating a switching component into the first and second components so that (a) at a first time the first segment is active and while the second segment is inactive and (b) at a second time the first segment is inactive and while the second segment is active.
Abstract:
A peritoneal dialysis method includes (i) connecting smaller and larger supply containers to a junction, the smaller and larger supply bags both full of dialysate; (ii) allowing the junction to be connected to a patient's transfer set; allowing the patient to drain through the junction; (iii) allowing the patient to fill from the smaller supply container; and (iv) allowing the patient to refill the smaller supply container from the larger supply container.
Abstract:
Transfer sets are disclosed in the present patent. The transfer set provides a connection between a source of peritoneal dialysis fluid and a patient for whom peritoneal dialysis has been prescribed. The transfer sets disclosed herein are smaller and provide a more compact and convenient device by which a dialysis patient controls the flow of dialysis fluid to and from the peritoneum of the patient. The devices are more compact and convenient because they include more convenient mechanisms for starting and stopping flow of the dialysis fluid. It is also easy to determine whether the mechanism is in a closed or open configuration by simply looking at the mechanism.
Abstract:
A system and method for automatically adjusting a Continuous Cycling Peritoneal Dialysis (“CCPD”) therapy to minimize the potential for excess intra-peritoneal volume. The adjustments are made at the end of the drain, just prior to the next fill. The adjustments short the next fill, if necessary, to limit the intra-peritoneal volume, add a cycle, if necessary, to use all of the available dialysis solution and will average the remaining dwell time to maximize the therapeutic benefit of the therapy in the allotted time. In another embodiment, a tidal therapy using trended patient UF data is provided.
Abstract:
A plane super wide band coupling antenna comprises an isolating substrate for installing with a metal thin film layer by printing; a first radiating portion being a metal thin film layer printed upon the isolating substrate; the first radiating portion having a coupling section and being extended with a feeding point; a second radiating portion being a metal thin film layer printed upon the isolating substrate; the second radiating portion extending from a ground portion on the isolating substrate and being a bended structure; the second radiating portion being formed with gaps with the first radiating portion; the ground portion being formed by a metal thin film layer; one end thereof being electrically connected to the second radiating portion; a signal feeding wire being a coaxial cable; and the main signal wire of the signal feeding wire being electrically connected to the feeding point of the first radiating portion.
Abstract:
A medical fluid or dialysis system includes an auto-connection mechanism that connects connectors from the supply bags to dialysis cassette ports or cassette supply lines. The system provides for multiple, e.g., four, supply bags, which can be connected to a manifold of the auto-connection mechanism. Tip protecting caps that protect the supply line ends and cassette ports or cassette supply line ends are made to be compatible with the auto-connection mechanism. The auto-connection mechanism removes all the caps and connects the supply lines to the cassette. At least one roller occluder is provided that occludes the supply tubing prior to the tip protecting caps being removed. The roller occludes prevent medical dialysis fluid from spilling out of the supply lines between the time that the caps are removed and connection to the cassette is made.