Abstract:
A method of patterning an attenuated phase-shifting mask from a mask blank, is provided. The mask blank has an attenuating and phase-shifting layer formed over a transparent layer. The phase-shifting layer has an initial thickness. The initial thickness of the phase-shifting layer is adapted to provide a first predetermined phase shift for a first wavelength of light passing therethrough. The initial thickness of the phase shifting layer is reduced to a first thickness. Portions of the phase-shifting layer are removed to form a pattern of clear areas. The first thickness of the phase-shifting layer at dark areas is adapted to provide a second predetermined phase shift for a second wavelength of light passing therethrough relative to the same light of the second wavelength passing through the clear areas. The first wavelength differs from the second wavelength.
Abstract:
A mask for manufacturing a semiconductor device comprises a transparent substrate. A metal-containing layer overlies the transparent substrate in a first region. A capping layer overlies and is coextensive with the metal-containing layer without wrapping around side edges of the metal-containing layer. The capping layer is substantially free of nitride. The transparent substrate has a second region separate from the first region. The transparent substrate is exposed in the second region.
Abstract:
A method of fabricating a photomask is provided. A masking layer (e.g., chrome) is deposited on a substrate. A plasma treatment may be performed on the chrome layer. A photoresist layer may be formed on the treated chrome layer. In an embodiment, the plasma treatment roughens the chrome layer. In an embodiment, the plasma treatment forms a barrier film on the chrome layer. The photoresist layer may be used to pattern a sub-resolution assist feature.
Abstract:
Provided is a method of fabricating a memory device. A substrate including an array region and a peripheral region is provided. A first feature and a second feature are formed in the array region. The first feature and the second feature have a first pitch. A plurality of spacers abutting each of the first feature and the second feature are formed. The plurality of spacers have a second pitch. A third feature in the peripheral region and a fourth and fifth feature in the array region are formed concurrently. The forth and fifth feature have the second pitch.
Abstract:
A method of manufacturing a semiconductor device comprising forming an active region in a device substrate using a first phase shift mask (PSM) having a first patterned light shielding layer formed thereon, forming a polysilicon feature on the device substrate over the active region using a second PSM having a second patterned light shielding layer formed thereon, forming a contact feature on the polysilicon feature using a third PSM having a third patterned light shielding layer formed thereon, and forming a metal feature on the contact feature using a fourth PSM having a fourth patterned light shielding layer formed thereon, wherein at least one of the third and fourth patterned light shielding layers is patterned substantially similarly to at least one of the first and second patterned light shielding layers.
Abstract:
The present disclosure provides a mask. The mask includes a transparent substrate, a main feature, and an assistant feature. The main feature includes attenuating material and is disposed on the substrate. The assistant feature includes a sub-resolution feature providing a phase shift. The assistant feature is spaced a distance from the main feature. The assistant feature includes a trench defined by the substrate. The present disclosure further provides a method of fabricating the mask.
Abstract:
A blank mask for photomasking patterns on an integrated circuit comprises a non-conductive substrate and a layer of conductive material deposited on the substrate covering substantially the entire surface of said substrate. Methods for preventing charge accumulation on a non-conductive region of a mask, which is not covered by a layer of conductive material, are provided. One method comprises controlling electron beams to prevent the beams from striking an outer region for an area more than 90 percent of the outer region when patterning a predetermined feature on the mask. The outer region comprises an area beginning from an edge of the mask and ending at 2 to 6 mm inward from the edge. Another method comprises using a blocker to prevent electron beams from hitting the outer region for an area more than 90 percent of the outer region when patterning a predetermined feature on the substrate.
Abstract:
A method for repairing a transparent photomask substrate and a transparent photomask substrate repaired in accord with the method employ when eliminating a defect within a transparent photomask substrate a multi-stepped aperture having a series of progressive steps which separate a series of progressive plateaus. Each plateau has a plateau width and a step height such as to enhance transparent photomask substrate transmittance within the multi-stepped aperture. The method provides for efficient repair of a transparent photomask substrate.
Abstract:
A method for exposing a blanket photoresist layer employs: (1) a first direct write exposure of the blanket photoresist layer to form therein an exposed peripheral sub-region of a desired exposed pattern; and (2) a second masked photoexposure of the blanket photoresist layer to form therein a masked photoexposed bulk sub-region of the desired exposed pattern which overlaps but does not extend beyond the exposed peripheral sub-region. The once masked photoexposed once direct write exposed blanket photoresist layer may be developed to form a patterned photoresist layer employed for forming a patterned opaque layer border within an opaque bordered attenuated phase shift mask.
Abstract:
The present disclosure provides a lithography apparatus. The lithography apparatus includes a radiation source providing a radiation energy with a wavelength selected from the group consisting of 193 nm, 248 nm, and 365 nm; a lens system configured approximate to the radiation source; a mask chamber proximate to the lens system, configured to hold a mask and operable to provide a single atom gas to the mask chamber; and a substrate stage configured to hold a substrate and receive the radiation energy through the lens system and the mask during an exposing process.