Abstract:
A method for automatically controlling angles in a driveline of a vehicle is disclosed. The vehicle includes an air-wide suspension system, and the driveline includes a drive shaft driven through a universal joint. The universal joint produces a rotational velocity that is detected by a sensor of a control assembly. A controller, also part of the control assembly, converts the rotational velocity into alternating rotational acceleration and deceleration of the drive shaft. Once quantified, the acceleration and deceleration of the drive shaft is compared to determine any changes in rotational acceleration. In response to any changes in rotational acceleration, the air-ride suspension system is adjusted to control the driveline angle at one end of the drive shaft such that the driveline angle at one end is balanced relative to the driveline angle at the other end of the drive shaft, and noise, vibration, fatigue, or failure of the drive shaft is reduced.
Abstract:
A suspension system includes a stabilizer bar having decouplable end links. A first segment of each end link is attached to the suspension member while a second segment is attached to the stabilizer bar. The second segment preferably selectively telescopes within the first segment. When the end links are engaged, the stabilizer bar is rigidly linked to the suspension members to provide roll resistance in a known manner. When the end links are disengaged, the second segment telescopes relative to the first segment to decouple motion of the suspension member from the stabilizer bar. The affect of the stabilizer bar is removed and the articulation range of suspension system is increased as it is unhindered by the torsional resistance produced by the stabilizer bar. Activation can be provided automatically through the controller or manually through a switch operated by the driver.
Abstract:
A suspension system includes a torsion bar having at least one adjuster arm. The adjuster arms extend radially from the torsion bar to contact respective stop members when the torsion bar is subjected to a predetermined torsion. When an adjuster arm contacts a stop, a portion of the torsion bar is rotationally fixed and the effective length of the torsion bar is reduced. By reducing the effective length of the torsion bar, the effective spring, rate of the torsion bar is increased. The present invention therefore provides a suspension system for a vehicle which can enhance riding comfort and handling by modifying the effective length of the torsion bar to achieve multiple spring constants with a single constant diameter torsion bar.