Abstract:
A method includes providing a shaft having a coupling section. The coupling section has a generally cylindrical exterior surface. The method includes applying a coating to the coupling section to form an engaging surface. The method further includes cold-forming the shaft and the coating such that a plurality of protrusions is formed in the engaging surface. The cold-forming of the shaft and the coating is performed contemporaneously.
Abstract:
A driveline assembly includes a shaft that is rotatably supported on a bearing assembly within a drive axle. The shaft has a first mount portion with a threaded exterior surface and a second mount portion with a splined exterior surface. A retaining ring is threaded onto the first mount portion to engage and retain the bearing assembly at a proper location. A yoke member with a splined inner bored is mounted on the shaft in engagement with the splined exterior surface. The yoke member can easily be connected and disconnected from the shaft without having to remove the retaining ring. The yoke member also includes a quick disconnect device that simplifies removal and re-assembly of the yoke member from the shaft.
Abstract:
A method and system for optimizing performance of vehicle control systems based on the dynamics of the specific vehicle include a sensor for sensing a predetermined parameter associated with any one of the vehicle control systems during a predetermined trigger event. A control logic determines a critical vibration mode characteristic for the vehicle control system based on the sensed parameter and operates the vehicle control system based on the determined critical vibration mode characteristic.
Abstract:
A driveline assembly including a tubular male member and a tubular female member both disposed about an axis and having thin walls defining inner and outer surfaces. Both the male and female members are fixed to yokes. The yoke of the female member is coupled to a transmission and the yoke of the male member is coupled to a wheel axle. An elastomeric sleeve is adhered to and conforms with the inner surface of the female member and is complementary in configuration to the outer surface of the male member. A male tooth is formed within the thin wall of the male member and a female tooth is formed within the thin wall of the female member. Each tooth has a linear portion and a pair of legs. The legs of the male and female teeth are separated by additional circumferentially extending linear portions. The male member nonrotatably engages the female member for transmitting torque from the transmission to the axle. Specifically, the female member is the drive shaft and the male member is the driven shaft. The male member can also slide within the female member to permit relative longitudinal movement between the two members for assembly and disassembly and for absorbing exterior forces.
Abstract:
Agricultural slip type driveline assemblies are generally of a sliding shaft design. A square shaft is fitted into a square tube slip yoke having an internal cavity that generally mates with the square shaft. The square shaft is generally welded to the square hole yoke. The sealing member is made of a resilient material and has four walls and integral radially inwardly extending ridge members. The walls and ridges generally complement and mate with the square end of a slip yoke that has four grooves on its surface to receive the ridges and hold the seal in place. The walls are joined to four radially inwardly extending walls which in turn are joined to radially inwardly converging square pyramidal walls. The pyramidal walls terminate at four radially outwardly extending reinforcing ribs.
Abstract:
A square one piece sealing member for a slip type driveline assembly to prevent loss and contamination of lubricant. The sealing member is made of a resilient material and has four walls and integral radially inwardly extending ridge members. The walls and ridges generally complement and mate with the square end of a slip yoke that has four grooves on its surface to receive the ridges. The walls are joined to four radially inwardly extending walls which in turn are joined to radially inwardly converging square pyramidal walls. The pyramidal walls terminate at four radially outwardly extending reinforcing ribs.
Abstract:
A driveline assembly for interconnecting one driveline component to another driveline component includes a vibration dampening mechanism. The vibration dampening mechanism is installed between a universal joint member and a companion flange. The universal joint member is coupled to a driveshaft and the companion flange is coupled to a drive axle member. A resilient member is secured between the universal joint and the companion flange for absorbing vibrations transmitted between the axle member and the driveshaft. Together the universal joint and companion flange define a central axis. The resilient member is compressible in a linear direction along the central axis to absorb vibrations.
Abstract:
A refrigerant fluid is placed within a driveline component, and in particular an axle housing. This refrigerant fluid is received within a sealed reservoir such that it is sealed from the typical lubricant in the driveline component. The lubricant heats the refrigerant through a housing such that the refrigerant vaporizes within the driveline component housing, thus cooling the lubricant. The vaporized refrigerant travels to a cooling chamber mounted remotely from the reservoir. The cooled refrigerant is cooled to a liquid state, and then returned to the reservoir. Preferably the cooling chamber is positioned on the vehicle frame vertically above the driveline component.
Abstract:
A unique structure for connecting the cross member of a universal joint to two yokes includes at least a pair of wing bearings bolted to one of the yokes. Preferably, the other yoke utilizes full circular bores to receive the other two shafts of the cross member. The wing bearings include structure which ensures a secure connection to the yoke. In particular, a locator finger extends radially inwardly from the yoke and over the wing bearing and shaft. In this way, the distance between a reaction plane between the yoke and wing bearing and the centerline of the shaft within the wing bearing is reduced. This reduces a force moment on the shaft. In other features of this invention, the use of the full circular bore for one of the yokes allows the universal joint manufacturer to fully assemble the first yoke to the cross member, and ship that assembled yoke and cross member to the vehicle manufacturer. The vehicle manufacturer must only then assemble the yoke to its drive shaft, and bolt the two wing bearings to a second yoke. In this way, the vehicle manufacturer has no responsibility to properly lubricate the bearings in the universal joint. Thus, the bearings may be properly lubricated by the universal joint manufacturer, and should remain properly lubricated for the expected life of the universal joint.
Abstract:
An improved method of removing heat from a lubricant in an axle housing includes the use of a deflector in the axle housing. The deflector is positioned on a cover secured to the housing bowl. Lubricant is thrown against the deflector by a ring gear in the bowl. The lubricant is directed by the deflector outwardly to the axle ends of the axle assembly. In this way, the lubricant is exposed to a greater surface area, and the cooling efficiency of this system is greatly improved.