Abstract:
An universal joint dissipates shock and reduces torsional vibration to the elements of the universal joint. An elastomeric material, such as a polyurethane, is introduced between the bores of the yokes of the joint and the respective adjacent bearing cups that are mounted on the shafts of the cross bar.
Abstract:
A universal joint includes a seal assembly that is positioned between each trunnion and a corresponding cup. The seal assembly includes a resilient seal that engages an inner surface of the cup and an outer surface of the trunnion. A deflector provides a snap fit for attaching the cup to the trunnion. The deflector is formed form a rigid and deformable material that protects the resilient seal from contamination, in addition to retaining the cup to the trunnion.
Abstract:
A driveshaft assembly includes a common male component and a female component in engagement with the male component. The female component includes a yoke, a configurable segment and a receptacle member. The configurable segment provides a length that corresponds to a desired vehicle driveshaft length.
Abstract:
A suspension for a heavy duty vehicle is provided that includes a frame. A lower linkage is supported by the frame at a first pivotal connection. A drive axle assembly is supported by a lower linkage at a second pivotal connection. The drive axle assembly includes an input shaft defining a pinion angle. An upper linkage interconnects the drive axle assembly and the frame at third and fourth pivotal connections, respectively. The upper linkage includes an adjustment member, such as a turnbuckle, for modifying the length of the upper linkage to obtain a predetermined pinion angle. In this manner, the pinion angle may be adjusted upon assembly of the suspension system. Furthermore, by permitting the drive axle assembly to pivotally move relative to the linkages, the pinion angle may be maintained during suspension movement.
Abstract:
A system measures multiple operational angles of a driveline assembly and compares the signals to each other to determine whether the angles and the respective driveline components are properly balanced. Different types of sensor assemblies can be used to measure the operational angles including various types of contact and non-contact sensors. In one example, the operational angle between one axle differential case and a corresponding universal joint can be compared to the operational angle between another axle differential case and corresponding universal joint mounted at an opposite end of the driveline. If the angles are equal or very close to one another than the angles are properly balanced. If the ratio between the two angles exceeds a predetermined limit, the driveline components are not properly balanced and the components can be repositioned to avoid premature wear.
Abstract:
A method for automatically controlling angles in a driveline of a vehicle is disclosed. The vehicle includes an air-wide suspension system, and the driveline includes a drive shaft driven through a universal joint. The universal joint produces a rotational velocity that is detected by a sensor of a control assembly. A controller, also part of the control assembly, converts the rotational velocity into alternating rotational acceleration and deceleration of the drive shaft. Once quantified, the acceleration and deceleration of the drive shaft is compared to determine any changes in rotational acceleration. In response to any changes in rotational acceleration, the air-ride suspension system is adjusted to control the driveline angle at one end of the drive shaft such that the driveline angle at one end is balanced relative to the driveline angle at the other end of the drive shaft, and noise, vibration, fatigue, or failure of the drive shaft is reduced.
Abstract:
A driveline assembly for interconnecting one driveline component to another driveline component includes a vibration dampening mechanism. The vibration dampening mechanism is installed between a universal joint member and a companion flange. The universal joint member is coupled to a driveshaft and the companion flange is coupled to a drive axle member. A resilient member is secured between the universal joint and the companion flange for absorbing vibrations transmitted between the axle member and the driveshaft. Together the universal joint and companion flange define a central axis. The resilient member is compressible in a linear direction along the central axis to absorb vibrations.