Abstract:
A mechanism is provided in a logically partitioned data processing system for controlling depth and latency of exit of a virtual processor's idle state. A virtualization layer generates a cede latency setting information (CLSI) data. Responsive to booting a logical partition, the virtualization layer communicates the CLSI data to an operating system (OS) of the logical partition. The OS determines, based on the CLSI data, a particular idle state of a virtual processor under a control of the OS. Responsive to the OS calling the virtualization layer, the OS communicates the particular idle state of the virtual processor to the virtualization layer for assigning the particular idle state and wake-up characteristics to the virtual processor.
Abstract:
An apparatus, program product and method distributes work within a logically partitioned computer system by binding a virtual processor or other resource of a hypervisor partition to a partition or physical resource. The partition or physical resource to which the virtual resource is bound is the same partition or physical resource upon whose behalf the hypervisor resource does work. The partition requesting work of the hypervisor partition is thus penalized by virtue the virtual resource using a physical resource owned by the requesting partition.
Abstract:
A computer configuration utility automatically alters system configuration parameters to sample multiple different configurations. At least one workrate metric is measured at each sampled configuration. The workrate measurements for the multiple different configurations are compared to determine the effect of different configurations with respect to at least one optimization criterion. System configuration is automatically adjusted to the optimum configuration. Preferably, the workrate metric is (non-idle) instructions executed per unit of time.
Abstract:
A mechanism is provided in a logically partitioned data processing system for controlling depth and latency of exit of a virtual processor's idle state. A virtualization layer generates a cede latency setting information (CLSI) data. Responsive to booting a logical partition, the virtualization layer communicates the CLSI data to an operating system (OS) of the logical partition. The OS determines, based on the CLSI data, a particular idle state of a virtual processor under a control of the OS. Responsive to the OS calling the virtualization layer, the OS communicates the particular idle state of the virtual processor to the virtualization layer for assigning the particular idle state and wake-up characteristics to the virtual processor.
Abstract:
The present invention thus provides for a method, system, and computer-usable medium that afford an equitably charging of a customer for computer usage time. In a preferred embodiment, the method includes the steps of: tracking an amount of computer resources in a Simultaneous Multithreading (SMT) computer that are available to a customer for a specified period of time; determining if the computer resources in the SMT computer are operating at a nominal rate; and in response to determining that the computer resources are operating at a non-nominal rate, adjusting a billing charge to the customer, wherein the billing charge reflects that the customer has available computer resources, in the SMT computer, that are not operating at the nominal rate during the specified period of time.
Abstract:
Disclosed is an apparatus, method, and program product for observing the nodal workload balance of the system on an ongoing basis, and for dynamically changing the preferred nodes of existing threads in order to improve nodal balance. Workload balance is ascertained on a nodal basis and then thread-based workload information is collected. If the detected imbalance persists, the thread-based information is used to change the assignment of preferred nodes to threads to improve nodal workload balance.
Abstract:
Disclosed is an apparatus, method, and program product that enables distribution of operating system resources on a nodal basis in the same proportions as the expected system workload. The preferred embodiment of the present invention accomplishes this by assigning various types of weights to each node to represent their proportion of the overall balance within the system. Target Weights represent the desired distribution of the workload based on the existing proportions of processor and memory resources on each node. The actual workload balance on the system is represented by Current Weights, which the operating system strives to keep as close to the Target Weights as possible, on an ongoing basis. When the system is started, operating system services distribute their resources nodally in the same proportions as the Target Weights, and can request to be notified if the Target Weights ever change. If processors and/or memory are subsequently added or removed, new Target Weights are calculated at that time, and all services which requested notification are notified so they can redistribute their resources according to the new Target Weights or a stepwise refinement thereof.
Abstract:
Mechanism for Assigning Home Nodes to Newly Created Threads Disclosed is an apparatus, method, and program product for associating threads with the processing nodes of a multi-nodal computer system. The assignment is accomplished by considering both the relative work capacity of, and the relative amount of ongoing work assigned to, each node. Initiation Weights are used in the preferred embodiment to reflect the desired proportions of threads assigned to each node, from the standpoint of which node should be chosen when a new thread is created.
Abstract:
According to one aspect of the present disclosure, a method and technique for task priority boost management is disclosed. The method includes: responsive to a thread executing in user mode an instruction to boost a priority of the thread, accessing a boost register, the boost register accessible in kernel mode; determining a value of the boost register; and responsive to determining that the boost register holds a non-zero value, boosting the priority of the thread.
Abstract:
According to one aspect of the present disclosure, a method and technique for task priority boost management is disclosed. The method includes: responsive to a thread executing in user mode an instruction to boost a priority of the thread, accessing a boost register, the boost register accessible in kernel mode; determining a value of the boost register; and responsive to determining that the boost register holds a non-zero value, boosting the priority of the thread.