Abstract:
A 2×VDD-tolerant input/output (I/O) buffer circuit with process, voltage, and temperature (PVT) compensation suitable for CMOS technology is disclosed. A 2×VDD-tolerant I/O buffer with a PVT compensation circuit is implemented with novel 2×VDD-tolerant logic gates. Output slew rate variations can be kept within smaller ranges to match maximum and minimum timing specifications. A 2×VDD tolerant logic circuit for implementing the I/O buffer is also disclosed.
Abstract:
The invention relates to an electrostatic discharge protecting circuit with ultra-low standby leakage current for twice supply voltage tolerance. The electrostatic discharge protecting circuit of the invention includes a substrate driver, a third transistor, a start-up circuit, a RC circuit and a second resistor. The substrate driver has a first transistor and a second transistor in serious connection. The start-up circuit has a fourth transistor and a fifth transistor with diode-connected. The RC circuit has a first resistor, a sixth transistor and a seventh transistor in serious connection. Compared with the prior art, the electrostatic discharge protecting circuit with ultra-low standby leakage current for twice supply voltage tolerance of the invention with advantages of low standby leakage current, high ESD robustness, and no gate-oxide reliability issue is an excellent circuit solution for on-chip ESD protection design for mixed-voltage I/O buffers in nanometer CMOS technologies.
Abstract:
The invention relates to an integrated circuit memory unit comprising: a memory cell, a switched bulk DC voltage source and a plurality of wordline-controlled transistors. Each of wordline-controlled transistors has a bulk connected to the switched bulk DC voltage source. When the data bit is read from the memory cell or the data bit is written into the memory cell, the bulks of the wordline-controlled transistors are switched to a first voltage level from the switched bulk DC voltage source so as to increase the drain current and obtain faster operation speed. When in an idle mode, the bulks of the wordline-controlled transistors are switched to a second voltage level from the switched bulk DC voltage source so as to obtain higher threshold voltage and decrease the leakage current.
Abstract:
A method and a circuit for resolving the out-of-phase problem between a color burst signal and a sub-carrier signal of a television system. A delay means is used which leads to the synchronization of the color burst signal and the sub-carrier signal such that a subsequent color demodulator can demodulate correct color signals. Therefore, the locking of the two signals will be fastened without any excessively large circuit hardware.
Abstract:
A frequency shift detector includes a digital control unit, a digital/analog converter, a reagent concentration detecting circuit and a frequency difference generator, wherein the digital control unit includes a control circuit and a direct digital frequency synthesizer electrically connected with the control circuit, and the control circuit comprises a reset terminal and a pulse input terminal. The digital control unit proceeds with accurate concentration detection for various samples borne on the reagent concentration detecting circuit.
Abstract:
The invention relates to an implantable biomedical chip with modulator for a wireless neural stimulating system. The implantable biomedical chip comprises a power regulator, a demodulator, a baseband circuit, a D/A converter, an instrumentation amplifier, an A/D converter and a modulator. According to the invention, the modulator is mounted on the implantable biomedical chip, and can achieve full-duplex communication to improve the controllability and observability. Besides, the power consumption and area occupation is reduced as compared with using discrete components. Therefore, the integration of the implantable biomedical chip can be easily accomplished.
Abstract:
A mixed-voltage I/O buffer includes an input buffer circuit. The input buffer circuit includes a first inverter, a first voltage level limiting circuit, a first voltage level pull-up circuit, an input stage circuit, and a logic calibration circuit. The first inverter inverts an input signal to generate a first control signal. The first voltage level limiting circuit limits voltage level of an external signal to generate the input signal transmitted to the first inverter to prevent electrical overstress of the first inverter. The first voltage level pull-up circuit is controlled by the first control signal to pull up voltage level of the input signal inputted into the first inverter. The input stage circuit receives the first control signal to generate corresponding digital signals inputted into a core circuit. The logic calibration circuit calibrates voltage level of the first control signal when the first inverter mis-operates due to the input signal having a low voltage level.
Abstract:
A charging circuit integrated into a chip, comprising a charging unit, a switch unit, a biasing unit, a voltage-dividing unit, and a comparing unit. The charging unit is connected between a power supply input and a load for outputting a constant current based on a constant bias voltage supplied by the power supply input in order to charge the load. The switch unit is connected between the charging unit and the power supply input for turning on or cutting off the charging unit. The voltage-dividing unit generates a first signal to the comparing unit according to a voltage of the load. The biasing unit outputs a second signal having a constant voltage to the comparing unit. The comparing unit compares the first signal with the second signal for cutting off or turning on the switch unit, bringing the charging unit to charge or stop charging the load, respectively.
Abstract:
An output buffer circuit includes a high voltage detecting circuit, a dynamic gate bias generating circuit, an output stage circuit and a pad voltage detector. The high voltage detecting circuit detects a power supply voltage and generates a first and a second determining signals and a first and a second bias voltages according to the power supply voltage. The dynamic gate bias generating circuit is biased by the first and the second bias voltages and receives the first and the second determining signals, for converting logic control signals into corresponding gate bias voltages according to the first and the second determining signals. The pad voltage detector detects a voltage of an I/O pad and provides a pad voltage detecting signal for the output stage circuit to modify an output signal outputted to an I/O pad. A mixed-voltage input/output (I/O) buffer is disclosed herein.
Abstract:
The invention relates to an implantable biomedical chip with modulator for a wireless neural stimulating system. The implantable biomedical chip comprises a power regulator, a demodulator, a baseband circuit, a D/A converter, an instrumentation amplifier, an A/D converter and a modulator. According to the invention, the modulator is mounted on the implantable biomedical chip, and can achieve full-duplex communication to improve the controllability and observability. Besides, the power consumption and area occupation is reduced as compared with using discrete components. Therefore, the integration of the implantable biomedical chip can be easily accomplished.