Abstract:
The present invention relates to a cytomegalovirus (CMV) which has been recombinantly altered to express a heterologous polypeptide and to allow for external control of viral replication. The heterologous polypeptide may be a polypeptide of interest such as an antigen, antibody or immune modulator. The CMV vectors of the invention are replication defective, or chemically controllable replication capable, or replication competent. The present invention also relates to uses of the CMV vectors such as inducing an immune response to an antigen or expressing an antibody or immune modulator in vivo. Compositions comprising the CMV expressing the heterologous polypeptide are also encompassed by the present invention.
Abstract:
The present invention relates to pharmaceutical compositions comprising virus-like particles (VLPs) of HPV, said VLPs adsorbed to an aluminum adjuvant, and an ISCOM-type adjuvant comprising a saponin, cholesterol, and a phospholipid. In preferred embodiments, the aluminum adjuvant comprises amorphous aluminum hydroxyphosphate sulfate. Another aspect of the invention provides multi-dose HPV vaccine formulations comprising HPV VLPs and an antimicrobial preservative selected from the group consisting of: m-cresol, phenol and benzyl alcohol. Also provided are methods of using the disclosed pharmaceutical compositions and formulations to induce an immune response against HPV in a human patient and to prevent HPV infection.
Abstract:
First generation adenoviral vectors and-recombinant adenovirus-based HIV vaccines which contain HIV-1 gag, HIV-1 pol and/or HIV-1 nef polynucleotide pharmaceutical products, and biologically relevant modifications thereof are described. The adenovirus vaccines, when directly introduced into living vertebrate tissue, express the relevant proteins, inducing a cellular immune response which specifically recognizes HIV-1. The exemplified polynucleotides of the present invention are synthetic DNA molecules encoding HIV-1 Gag, HIV-1 Pol, HIV-1 Nef, and derivatives thereof. The adenoviral vaccines of the present invention, alone or in combination, will offer a prophylactic advantage to previously uninfected individuals and/or provide a therapeutic effect by reducing viral load levels within an infected individual, thus prolonging the asymptomatic phase of HIV-1 infection.
Abstract:
Pharmaceutical compositions which comprise HIV Pol DNA vaccines are disclosed, along with the production and use of these DNA vaccines. The pol-based DNA vaccines of the invention are administered directly introduced into living vertebrate tissue, preferably humans, and preferably express inactivated versions of the HIV Pol protein devoid of protease, reverse transcriptase activity, RNase H activity and integrase activity, inducing a cellular immune response which specifically recognizes human immunodeficiency virus-1 (HIV-1). The DNA molecules which comprise the open reading frame of these DNA vaccines are synthetic DNA molecules encoding codon optimized HIV-1 Pol and codon optimized inactive derivatives of optimized HIV-1 Pol, including DNA molecules which encode inactive Pol proteins which comprise an amino terminal leader peptide.