Abstract:
An insulator ring for preventing short circuit contact between the opposite polarity electrode in a case-terminal cell design is described. Typically, a lithium/silver vanadium oxide cell is built in a case-negative design with the casing serving at the negative terminal. The cathode is connected to an insulated terminal pin. In a conventional cell construction, the electrode assembly is enclosed in an insulator bag in addition to the electrode separator envelopes before being housed inside the casing. The insulator bag ensures the cathode electrode will not come into short circuit contact with the casing. In the present invention, the insulator bag is replaced with an insulator ring which only protects those portions of the electrode assembly vulnerable to short circuit contact.
Abstract:
An improved lid for closing the open end of a casing of an electrochemical energy storage device is described. The improved lid comprises a flat region having spaced apart upper and lower planar surfaces joined by a peripheral edge, an angled transition forming a boss protruding from the lower surface, and a bore extending through the boss to the upper surface. An electrical energy storage device is also described, which includes the improved lid secured to the open end of the casing container of the device.
Abstract:
An insulator structure forming a physical barrier encapsulating the entire electrode assembly including all the positive portions and segregating them from the negative leads and the casing is described. By completely encapsulating the electrode assembly including the cathode lead portions from the anode leads and the casing, no opposite polarity structures that can potentially serve as a surface for lithium bridging are left exposed to electrolyte.
Abstract:
A highly compact electrochemical cell comprised of a casing having a proximal opening, a distal opening, and an intermediate sidewall surrounding an enclosed volume. A glass-to-metal seal is disposed in the proximal opening and within the enclosed volume of the casing, and a terminal pin extends from outside the casing through the glass-to-metal seal into the enclosed casing volume. An insulator is disposed along the casing sidewall. A cathode is contained within the insulator in electrical contact with the terminal pin. A separator disc is disposed contiguously with the casing sidewall and in contact with the cathode. An anode is provided in contact with the separator disc and with the casing sidewall opposite the cathode. An electrolyte is provided within the cell, and a lid is sealed to the casing to hermetically enclose the cell contents.
Abstract:
an electrochemical cell comprising a cathode of a powder material pressed into intimate contact with a rod-shaped current collector and an anode at least partially wrapped around the cathode is described. The cathode current collector is preferably provided with a plurality of offset flats offset with respect to each other. This helps prevent the cathode active material from sliding off of the rod-shaped current collector. The anode has spaced apart edges at opposite ends of its width that form a gap with the anode wrapped around the cathode. This helps in sliding the anode/cathode electrode assembly into a cylindrical tube comprising the cell casing. A preferred chemistry is a lithium/CFx activated with a nonaqueous electrolyte.
Abstract:
An electrochemical cell comprising a cathode material contacted to a perforated current collector having a portion left uncovered and an anode material contacted to an anode current collector is described. A separator sheet segregating the anode from direct contact with the cathode is folded back upon itself along a crease with an upper portion at least partially sealed to a lower portion along an aligned peripheral edge to form an envelope. A first envelope portion houses the cathode having the uncovered portion of the cathode current collector spaced from the crease and a second envelope portion houses the anode. The first envelope portion is sealed to the second envelope portion through the uncovered perforations of the cathode current collector to lock the anode aligned with the cathode. The anode and cathode are then wound into a jellyroll electrode assembly housed in a cylindrical casing and activated with an electrolyte.
Abstract:
The present invention relates to a current collector for an electrochemical cell. The current collector is a substrate having a grid pattern comprising open areas converging at an imaginary focal point on a connector tab of the substrate. The openings are grouped into distinct regions with the larger openings immediately adjacent to the connector tab and the smaller openings distant there from. This provides more conductive pathways at greater distances from the tab.
Abstract:
An improved lid for closing the open end of a casing of an electrochemical energy storage device is described. The improved lid comprises a flat region having spaced apart upper and lower planar surfaces joined by a peripheral edge, an angled transition forming a boss protruding from the lower surface, and a bore extending through the boss to the upper surface. An electrical energy storage device is also described, which includes the improved lid secured to the open end of the casing container of the device.
Abstract:
An electrochemical cell is described. The cell comprises a cathode material contacted to a perforated current collector having a portion left uncovered and an anode material contacted to an anode current collector. The anode comprises first and second strips positioned on opposite sides of the cathode, which is also in the form of a strip, but one that is much longer than each of the anode strips. Proximal ends of the anode strips reside adjacent to where the cathode is secured to a terminal pin/sleeve assembly. Distal ends of the anode strips are adjacent to the opposed ends of the cathode strip. A separator sheet segregating the anode from direct contact with the cathode provides an upper portion at least partially sealed to a lower portion along an aligned peripheral edge and through the uncovered perforations of the cathode current collector to lock the cathode in position. The anode and cathode are then wound into a galaxy electrode assembly housed in a cylindrical casing and activated with an electrolyte.
Abstract:
An electrochemical cell comprising a cathode of a powder material pressed into intimate contact with a rod-shaped current collector and an anode at least partially wrapped around the cathode is described. The cathode current collector is preferably provided with a plurality of offset flats offset with respect to each other. This helps prevent the cathode active material from sliding off of the rod-shaped current collector. The anode has spaced apart edges at opposite ends of its width that form a gap with the anode wrapped around the cathode. This helps in sliding the anode/cathode electrode assembly into a cylindrical tube comprising the cell casing. A preferred chemistry is a lithium/CFx activated with a nonaqueous electrolyte.