Abstract:
A display apparatus includes first and second display panels, a driver chip and a first flexible printed circuit. The first display panel displays a first image in response to first driving signals. The second display panel displays a second image in response to second driving signals. The driver chip is disposed between the first and second display panels, and the driver chip provides the first and second driving signals to the first and second display panels. The first flexible printed circuit is disposed between the first and second display panels, and the first flexible printed circuit applies the second driving signal generated from the driver chip to the second display panel. Therefore, an electrical resistance is reduced, so that a signal delay is prevented to enhance display qualities.
Abstract:
A driver chip for controlling a high-resolution display panel is presented. The driver chip is not much larger than a conventional driver chip that is currently used for lower resolution display panels. The driver chip applies data signals to the data lines of the display panel and gate control signals to a gate driver that is formed in the peripheral region of the display panel. The gate driver, which may be made of amorphous silicon TFTs, generates gate signals in response to the gate control signals from the driver chip and applies the gate signals to gate lines. Since the driver chip of the invention controls more gate lines and data lines than a conventional chip of about the same size, the driver chip may be easily adapted for display devices having multiple panels. Where multiple panels are used, the panels may be scanned simultaneously or sequentially.
Abstract:
There is disclosed a rearview mirror absorbing the light when the orientation of the liquid crystal is caused to change.A suitable amount of cholesteric material is added to the nematic liquid crystal of negative dielectric anisotropy mixed with a blue dye by 2%. The ratio of the thickness of the liquid crystal layer to the focal conic pitch d/p is limited within the range of 0.4 to 0.6. A silicone nitride layer is deposited on the upper transparent electrode so as to form an insulating film. A transparent adhesive layer is formed on the upper surface of the upper glass plate with a glass plate being pressed down to said adhesive layer.
Abstract:
A semiconductor device test system is disclosed. The semiconductor device test system extends driver- and comparator-functions acting as important functions of a test header to an external part (e.g., a HIFIX board) of the test header, such that it can double the productivity of a test without upgrading the test header. The semiconductor device test system includes a test header for testing a semiconductor device by a test controller, and a HIFIX board for establishing an electrical connection between the semiconductor device and the test header, and including a Device Under Test (DUT) test unit which processes a read signal generated from the semiconductor device by making one pair with a driver of the test header and transmits the processed read signal to the test header.
Abstract:
An LCD device includes a lower panel having a first substrate; an organic layer formed on the first substrate; a trans-reflection layer formed on the organic layer and having a reflection area reflecting a portion of incidence light from exterior and a transmission area transmitting other portion of the incidence light; color filters formed on the trans-reflection layer; an overcoating layer formed on the color filters; and a common electrode formed on the overcoating layer. A portion of the overcoating layer corresponding to the reflection area is thicker than a portion of the overcoating layer corresponding to the transmission area. The LCD device also includes an upper panel including a second substrate facing the first substrate with a predetermined gap; thin film transistors formed on the second substrate; and pixel electrodes connected to the thin film transistors; and a liquid crystal layer disposed between the lower and upper panels.
Abstract:
A driver chip for controlling a high-resolution display panel is presented. The driver chip is not much larger than a conventional driver chip that is currently used for lower resolution display panels. The driver chip applies data signals to the data lines of the display panel and gate control signals to a gate driver that is formed in the peripheral region of the display panel. The gate driver, which may be made of amorphous silicon TFTs, generates gate signals in response to the gate control signals from the driver chip and applies the gate signals to gate lines. Since the driver chip of the invention controls more gate lines and data lines than a conventional chip of about the same size, the driver chip may be easily adapted for display devices having multiple panels. Where multiple panels are used, the panels may be scanned simultaneously or sequentially.
Abstract:
Disclosed are a liquid crystal display device and a method for manufacturing the same, in which wirings connected between pads and an integrated circuit is protected from being corroded. A pixel array is formed on a display region of a substrate. A plurality of pads are formed on a non-display region of the substrate. An integrated circuit is formed on the non-display region of the substrate and connected to the pads to generate a signal for operating the pixel array. Conductive barrier layers separated from each of the pads are formed on peripheral portions of the pads connected to the integrated circuit. The conductive barrier layers have electric potential equivalent to that of each of the pads in accordance with internal connections of the integrated circuit. When bumps of the integrated circuit and the pads are attached to each other, the conductive barrier layers prevent the pads and the wirings connected to the pads from being corroded.
Abstract:
A display apparatus includes first and second display panels, a driver chip and a first flexible printed circuit. The first display panel displays a first image in response to first driving signals. The second display panel displays a second image in response to second driving signals. The driver chip is disposed between the first and second display panels, and the driver chip provides the first and second driving signals to the first and second display panels. The first flexible printed circuit is disposed between the first and second display panels, and the first flexible printed circuit applies the second driving signal generated from the driver chip to the second display panel. Therefore, an electrical resistance is reduced, so that a signal delay is prevented to enhance display qualities.
Abstract:
A display apparatus includes first and second display panels, a driver chip and a flexible printed circuit board. The driver chip disposed on the first display panel provides the first display panel with first and second driving signals. The flexible pcb electrically connects the first and second display panels to transfer the first and second driving signals to the second display panel. Each of the first and second display panels includes lower and upper substrates, a liquid crystal interposed between the lower and upper substrates, a combining member combining the lower and upper substrates and has an opening portion formed between sides of the lower and upper substrates, and a sealing member sealing the opening portion. By using a single chip to drive both LCD panels, both size reduction and yield/productivity increase are achieved.
Abstract:
Disclosed are a liquid crystal display device and a method for manufacturing the same, in which wirings connected between pads and an integrated circuit is protected from being corroded. A pixel array is formed on a display region of a substrate. A plurality of pads are formed on a non-display region of the substrate. An integrated circuit is formed on the non-display region of the substrate and connected to the pads to generate a signal for operating the pixel array. Conductive barrier layers separated from each of the pads are formed on peripheral portions of the pads connected to the integrated circuit. The conductive barrier layers have electric potential equivalent to that of each of the pads in accordance with internal connections of the integrated circuit. When bumps of the integrated circuit and the pads are attached to each other, the conductive barrier layers prevent the pads and the wirings connected to the pads from being corroded.