Abstract:
There is provided a sintered friction material for railway vehicles that has excellent frictional properties and wear resistance even in a high speed range of 280 km/hour or more. The sintered friction material for railway vehicles is a green compact sintered material containing, in mass %, Cu: 50.0 to 75.0%, graphite: 5.0 to 15.0%, one or more selected from the group consisting of magnesia, zircon sand, silica, zirconia, mullite, and silicon nitride: 1.5 to 15.0%, one or more selected from the group consisting of W and Mo: 3.0 to 30.0%, and one or more selected from the group consisting of ferrochromium, ferrotungsten, ferromolybdenum, and stainless steel: 2.0 to 20.0%, with the balance being impurities.
Abstract:
The object of the present invention is to provide a compact for producing a sintered alloy which allows a sintered alloy obtained by sintering the compact to have improved mechanical strength and wear resistance, a wear-resistant iron-based sintered alloy, and a method for producing the same. The wear-resistant iron-based sintered alloy is produced by: forming a compact for producing a sintered alloy from a powder mixture containing a hard powder, a graphite powder, and an iron-based powder by powder compacting; and sintering the compact for producing a sintered alloy while diffusing C in the graphite powder of the compact for producing a sintered alloy in hard particles that constitute the hard powder. The hard particles contain 10% to 50% by mass of Mo, 3% to 20% by mass of Cr, and 2% to 15% by mass of Mn, with the balance made up of incidental impurities and Fe, and the hard powder and the graphite powder contained in the powder mixture account for 5% to 60% by mass and 0.5% to 2.0% by mass of the total amount of the hard powder, the graphite powder, and the iron-based powder, respectively.
Abstract:
Mixed powder that contains first hard particles, second hard particles, graphite particles, and iron particles is used to manufacture a sintered alloy. The first hard particle is a Fe—Mo—Cr—Mn based alloy particle, the second hard particle is a Fe—Mo—Si based alloy particle. The mixed powder contains 5 to 50 mass % of the first hard particles, 1 to 8 mass % of the second hard particles, and 0.5 to 1.0 mass % of the graphite particles when total mass of the first hard particles, the second hard particles, the graphite particles, and the iron particles is set as 100 mass %.
Abstract:
A sintered friction material is formed by pressure sintering mixed powder at 800° C. or above, the mixed powder consisting of, in mass %, Cu and/or Cu alloy: 40.0 to 80.0%, Ni: 0% or more and less than 5.0%, Sn: 0 to 10.0%, Zn: 0 to 10.0%, VC: 0.5 to 5.0%, Fe and/or Fe alloy: 2.0 to 40.0%, lubricant: 5.0 to 30.0%, metal oxide and/or metal nitride: 1.5 to 30.0%, and the balance being impurity.
Abstract:
A sintered friction material is formed by pressure sintering mixed powder at 800° C. or above, the mixed powder consisting of, in mass %, Cu and/or Cu alloy: 40.0 to 80.0%, Ni: 0% or more and less than 5.0%, Sn: 0 to 10.0%, Zn: 0 to 10.0%, VC: 0.5 to 5.0%, Fe and/or Fe alloy: 2.0 to 40.0%, lubricant: 5.0 to 30.0%, metal oxide and/or metal nitride: 1.5 to 30.0%, and the balance being impurity.
Abstract:
The object of the present invention is to provide a compact for producing a sintered alloy which allows a sintered alloy obtained by sintering the compact to have improved mechanical strength and wear resistance, a wear-resistant iron-based sintered alloy, and a method for producing the same. The wear-resistant iron-based sintered alloy is produced by: forming a compact for producing a sintered alloy from a powder mixture containing a hard powder, a graphite powder, and an iron-based powder by powder compacting; and sintering the compact for producing a sintered alloy while diffusing C in the graphite powder of the compact for producing a sintered alloy in hard particles that constitute the hard powder. The hard particles contain 10% to 50% by mass of Mo, 3% to 20% by mass of Cr, and 2% to 15% by mass of Mn, with the balance made up of incidental impurities and Fe, and the hard powder and the graphite powder contained in the powder mixture account for 5% to 60% by mass and 0.5% to 2.0% by mass of the total amount of the hard powder, the graphite powder, and the iron-based powder, respectively.
Abstract:
An inner hole to which a driving shaft is inserted is formed in a cam piece of a camshaft, and a plurality of grooves extending in the insertion direction of the driving shaft are formed in the inner hole. The driving shaft is inserted into the inner hole with the cam piece heated to expand the diameter of the inner hole. By reducing again the diameter of the inner hole by cooling it in this state, an outer circumferential surface of the driving shaft is pressed and raised by the inner hole and enters the groove, by which the cam piece is firmly fixed onto the driving shaft.
Abstract:
Provided is a hard particle in which Cr and W, that are quickly diffused in Mo, are present at the same time as Ni and Mn. Specifically, the hard particle contains Cr: 5% by mass to 20% by mass, W: 2% by mass to 19% by mass, Mo: 25% by mass to 40% by mass, Ni: 10% by mass to 22% by mass, Mn: 10% by mass or less, C: 2.0% by mass or less, Si: 2.0% by mass or less, and a remainder: Fe and unavoidable impurities.
Abstract:
A wear-resistant iron-based sintered alloy made of a mixed powder including first hard particles, second hard particles, graphite particles, and iron particles is produced. The first hard particles are Fe—Mo—Ni—Co—Mn—Si—C alloy particles. The second hard particles are Fe—Mo—Si alloy particles. The mixed powder includes the first hard particles at 5 mass % to 50 mass %, the second hard particles at 1 mass % to 8 mass %, and the graphite particles at 0.5 mass % to 1.5 mass % when a total amount of the above particles is set as 100 mass %. In a sintering process, sintering is performed so that the hardness of the first hard particles becomes 400 to 600 Hv and the hardness of the second hard particles exceeds 600 Hv. Then, an oxidation treatment is performed so that a density difference between before and after the oxidation treatment in a sintered product becomes 0.05 g/cm3 or more.
Abstract:
Mixed powder that contains first hard particles, second hard particles, graphite particles, and iron particles is used to manufacture a sintered alloy. The first hard particle is a Fe—Mo—Cr—Mn based alloy particle, the second hard particle is a Fe—Mo—Si based alloy particle. The mixed powder contains 5 to 50 mass % of the first hard particles, 1 to 8 mass % of the second hard particles, and 0.5 to 1.0 mass % of the graphite particles when total mass of the first hard particles, the second hard particles, the graphite particles, and the iron particles is set as 100 mass %.