Abstract:
The present invention relates to a shear deformation device. To improve the productivity by solving the problem that the amount of shear deformation of a material is not uniform and sufficient due to the gap between the curved portion of the molding path and the lower parts of the material and omitting any additional process for removing irregularity and surface products on the surface of the material, there is provided a shear deformation device capable of scalping, characterized in that a scalping guide path which allows the surface of the material to be separated from the other portions of the material as the material is scalped at a predetermined thickness when passing through the curved portion during shear deformation is formed in the curved portion in communication with the molding path. In addition, there are provided additional constructions for effectively performing shear deformation by a small power by reducing the friction at the molding path excepting the curved portion. The present invention thusly constructed can be utilized for continuously and effectively mass-produce sheared materials.
Abstract:
A process for manufacturing an Al—Si alloy for use in a vehicle propeller shaft is provided. The Al—Si alloy manufacturing process includes the steps of heating and melting Al—Si alloy where Si contains 13-40 weight percentage (wt %) of the whole alloy, to thereby prepare melt, maintaining the melt at 700-900° C. and then spraying an high pressure inert gas to the melt and rapidly solidifying the same to thereby obtain a forming body, and extruding the forming body at 400-550° C. The physical properties of the Al—Si alloy manufactured by a spray forming process is at least similar to that of the vehicle propeller shafts which have been already known, and also spotlighted as new alloy compositions which can replace the conventional propeller shaft material.
Abstract:
The present invention relates to processes of regenerating Ni catalysts which had been used in a hydrogenation of unsaturated fatty oil or petroleum resin, which comprise separating the Ni-extracted solution and support by extracting the pretreated Ni catalysts with an acid, preparing support-containing solution by burning the separated support in the flow of air or oxygen diluted with nitrogen at the temperature of 300.degree. to 800.degree. C. for 5 to 15 hours and adding deionized water to the support, preparing a catalyst precursor by dropping the Ni-extracted solution and the mixed solution of a basic compound and a compound with free oxygen in the support-containing solution during agitation so as to keep PH of the solution at 9 to 13, whereby nickel oxide precipitates on the support, carrying out a step consisting of aging, washing, filtering and drying the catalyst precursor, and stabilizing the dried catalyst precursor by reducing with hydrogen and passing in nitrogen diluted with oxygen or an organic material.
Abstract:
A catalyst for diesel particle filter includes a platinum (Pt)-neodymium (Nd) alloy that is carried in silica, a preparation method thereof and a soot reduction device for diesel engine including the same, wherein the catalyst for diesel particle filter can maintain high catalyst activity and implement high nitrogen monoxide (NO) conversion efficiency even though it is used under the high temperature or vulcanization condition for a long time.
Abstract:
A direct internal reforming system of ethanol for a molten carbonate fuel cell (MCFC) is provided. An MCFC anode for a direct internal reforming of ethanol, a manufacturing process thereof, and a direct internal reforming method in MCFC where an ethanol solution is injected into the anode are provided. by the simple process of coating the surface of the anode with small quantity of catalyst, the drawback in that the performance of MCFC is degraded when the ethanol is directly used as a fuel is overcome. Further, an additional apparatus such as an external reforming apparatus and additional cost for pelletizing the catalyst powders are not required, which is economical. Furthermore, the performance improvement enables long-term operation, which contributes to commercialization of MCFC.