摘要:
An organic light emitting diode display device and a driving method are provided. The organic light emitting diode display device comprises a data driver that generates a plurality of reference data voltages that have a level proportional to a gray scale level of a digital data supplied from the timing controller. The data driver supplies the data voltages to the plurality of data lines and compensates for the data voltages in accordance with a magnitude of the feedback voltages from the plurality of pixels fed back through the plurality of feedback lines under control of the timing controller.
摘要:
Provided are an organic electroluminescence display device and method of fabricating the same. An organic electroluminescence display device according to the present invention includes a first substrate; a plurality of data lines arranged in a first direction on the first substrate; a plurality of gate lines arranged in a second direction on the first substrate; a plurality of pixel regions defined by the gate lines and the data lines, wherein a first pixel line is defined as a line of the pixel regions arranged in the first direction and a second pixel line is defined as a line of the pixel regions arranged in the second direction; a thin film transistor in each pixel region; a plurality of first connecting lines electrically connecting the thin film transistors of the first pixel lines with each other; and a second connecting line electrically connecting the thin film transistor of at least one of the second pixel lines.
摘要:
A method of fabricating a LCD device includes forming a gate line, a gate electrode, and a pixel electrode having a double-layer structure on a first substrate using a first mask, the double-layer structure including first and second conductive layers; forming a first insulation film, a semiconductor pattern on the first insulation film, a source/drain pattern having an upper storage electrode, source and drain electrodes, a data line using a second mask, the data and gate lines defining a pixel region having transmission and reflection areas; forming a second insulation film on the source/drain pattern and a transmission hole by passing through the second insulation film to the second conductive layer in the transmission area using a third mask; and forming a reflective electrode in the reflection area using a fourth mask, the reflective electrode connecting the pixel electrode with the drain electrode and the storage electrode.
摘要:
A method and an apparatus to automatically switch a graphic user interface and a key interface of a portable electronic device between horizontal and vertical screen orientation modes based on screen orientation of the portable electronic device, the method including sensing a screen orientation of the portable electronic device and changing a display orientation of the graphic user interface and a key interface by changing key mapping according to the sensed screen orientation of the portable electronic device.
摘要:
A non-volatile memory device includes a tunnel oxide layer, a charge storage layer, a blocking insulating layer, and a gate electrode that are sequentially stacked, as well as an impurity diffusion layer in an active region at both sides of the gate electrode. The gate electrode crosses active regions between device isolation layers formed in a predetermined area of a semiconductor substrate, and an edge of the charge storage layer is extended to have a protruding part that protrudes from the gate electrode. In order to form a charge storage layer having a protruding part, a stack insulating layer including first to third insulating layers is formed in an active region between the device isolation layers formed in the substrate. A plurality of gate electrodes crossing the active region are formed on the stack insulating layer, and a sidewall spacer is formed on both sidewalls of the gate electrode. Using the sidewall spacer and the gate electrode, the stack insulating layer is etched to form a charge storage layer that protrudes from the sidewall of the gate electrode.
摘要:
Methods of forming integrated circuit devices (e.g., memory devices) include the use of preferred self-aligned contact hole fabrication steps. These steps improve process reliability by reducing the likelihood that contact holes will become misaligned to underlying integrated circuit device structures and thereby potentially expose the structures in an adverse manner. Typical methods include the steps of forming a plurality of interconnection patterns on a substrate and then covering a surface of the interconnection patterns and a portion of the substrate with a capping insulating layer such as silicon nitride layer. The capping insulating layer is then covered with an upper interlayer insulating layer different from the capping insulating layer. The upper interlayer insulating layer and the capping insulating layer are then dry-etched in sequence to form a first narrow contact hole that exposes the substrate, but preferably does not expose the interconnection patterns. The first contact hole is then widened in a self-aligned manner using the capping insulating layer as an etch-stop layer. This widening step is performed by wet etching sidewalls of the first contact hole using an etchant that etches the upper interlayer insulating layer faster than the capping insulating layer. In this manner, the first contact hole may be formed to initially compensate for potential misalignment errors and then a self-aligned wet etching step may be performed to widen the first contact hole into a second contact hole so that low resistance contacts (e.g., contact plugs) can be provided therein.
摘要:
A flash memory having a charge-storage dielectric layer. According to one embodiment, charge-storage dielectric layers are formed over the first and second active regions. The charge-storage layer over the first active region is not connected to the charge-storage layer over the second active region. A gate line overlies the charge-storage layer and extends across the first and second active regions and the isolation region. The charge-storage layer can be formed only where a gate line intersects an active region of a semiconductor substrate, not on an isolation region. Thus, undesirable influence or disturbance from adjacent memory cells can be avoided.
摘要:
The present invention relates to a continuous shear deformation device. In order to occur shear deformation at the position at which a material is inserted into a molding path from a rotary guide apparatus for the purpose of solving the problem that the amount of shear deformation of a material is non-uniform and insufficient due to the gap between the curved portion of the molding path and the lower parts of the material, there is provided a continuous shear deformation device, characterized in that a curved portion is constructed by collaboration between the rotary guide apparatus and the molding path. In addition, there are provided additional constructions for effectively performing shear deformation by a small power by reducing the friction at the molding path excepting the curved portion. The present invention thusly constructed can be utilized for continuously and effectively mass-produce sheared materials.
摘要:
The present invention relates to an advanced forming apparatus for sheet blanks such as sheet metals or plastics, and in particular to a multi-purpose and multi-functional forming apparatus which can form sheets into products of various curved surface shape without using a die. The dieless forming apparatus includes an elastomer installed on one side of the sheet blank; a group of punches disposed at the opposite side of the blank, and having ends of various shapes applying a force to the formed material by movement; and a control unit controlling the movement of the press. In addition, a fluid may be filled in substitute for a part of the elastomer to evenly apply a force to the formed material, and a fluid control unit may be included to control a fluid pressure.
摘要:
A buried bit line DRAM cell and a manufacturing method thereof are provided. The buried bit line DRAM cell has a buried bit line formed into a trench which isolates devices, the buried bit line being isolated from a semiconductor substrate, a gate formed to be orthogonal to the bit line on the substrate, a first insulating layer formed to insulate the gate, a source and a drain of a transistor formed on the substrate at both sides of the gate, a self-aligned bit line contact formed between the first insulating layers for making contact between the drain and the buried bit line, and a self-aligned buried contact formed between the first insulating layers for making contact between the source and a storage electrode. According to the above structure, misalignment between the gate and the bit line and the excessive exposure to thermal processing which are inherent in conventional Buried Bit Line cells can be avoided and the design rule margin can be improved.