Abstract:
A matrix assembly is provided for an electrical system such as, for example, a power distribution unit for an aircraft. The electrical system includes an enclosure and a number of current carrying components such as, for example, electrical bus members, electrical switching apparatus, and/or fuses. The matrix assembly includes a matrix member having a generally planar portion, a plurality of attachment points for attaching the current carrying components to the generally planar portion, and a plurality of mounting points for attaching the generally planar portion to a thermally conductive structure such as, for example, an aluminum airframe structure. The matrix member is a thermally conductive liquid crystalline polymer. In addition to providing dielectric insulation, the matrix member also effectively transfers heat away from the current carrying components to the aluminum airframe structure, thereby reducing the temperature and corresponding electrical resistance within the electrical system and improving performance.
Abstract:
An electrical switching apparatus such as, for example, a subminiature or aircraft circuit breaker, is provided for a circuit protection module of an electrical system, such as an aerospace power distribution unit. The circuit protection module includes a panel member. The electrical switching apparatus includes a housing, separable contacts enclosed by the housing, an operating mechanism for opening and closing the separable contacts, and a mounting element for attaching the housing to the panel member. The housing is a thermally conductive liquid crystalline polymer. The panel member and mounting element are thermally conductive. Heat generated by the separable contacts is transferred away from the separable contacts, through the housing and the thermally conductive mounting element, and into the thermally conductive panel member. A circuit protection module and an electrical system are also disclosed.
Abstract:
An improved electrical switching apparatus comprises a plurality of electrical switching assemblies in a ganged configuration. A bridging device mechanically connects together the actuator devices of the electrical switching assemblies to cause the simultaneous tripping of all of the electrical switching assemblies when an overload or an arc fault is detected on any electrical switching assembly of the gang.
Abstract:
A power distribution assembly is provided for a system such as, for example, an aircraft electrical system. The power distribution assembly includes a frame having a number of mounting points structured to be mounted to a thermally conductive structure such as, for example, an aircraft panel. A shell is disposed on the frame. A backplane is disposed within the shell. The backplane includes a plurality of at least partially embedded electrical conductors. Electrical apparatus such as, for example, relays or contactors, are electrically connected to the at least partially embedded electrical conductors. The relays or contactors generate heat. The backplane, the at least partially embedded electrical conductors, and the frame provide a direct thermal pathway for transferring the heat away from the power distribution assembly to the aircraft panel.
Abstract:
An electrical switching apparatus, such as a subminiature circuit breaker, includes a housing assembly, separable contacts, an operating mechanism having an actuator device and a latching assembly, a first trip device for tripping open the separable contacts in response to an overcurrent condition, and a second trip device for tripping open the separable contacts in response to an arc fault, a ground fault or a remotely transmitted signal. The subminiature circuit breaker includes a reset solenoid and a trip solenoid. The resent solenoid is coupled to the actuator device, and includes a coil operable to electrically reset the separable contacts. The trip solenoid is coupled to the latching assembly, and includes a coil operable to move the catch lever, thereby electrically tripping open the separable contacts.
Abstract:
A faceplate assembly is provided. The faceplate assembly includes a faceplate having planar member with a first side and a second side, the planar member having a number of openings therethrough, the planar member first side having a number of opaque portions and a number of translucent portions, each planar member first side translucent portion disposed adjacent one planar member opening, a number of sources of localized illumination, each the source of localized illumination disposed adjacent the planar member second side and adjacent a planar member first side translucent portion, and wherein the source of localized illumination may be illuminated causing a selected planar member first side translucent portion to be illuminated.
Abstract:
An improved bus apparatus includes a generally rigid substrate and a conductor apparatus. The conductor apparatus includes a number of bus elements that are embedded within the substrate and which are electrically connected with connection elements that each have an end that is situated external to the substrate. Additional connection elements extend through the substrate and are connectable with loads. Circuit interrupters and other devices are connectable with pairs of the connector elements, wherein one connector element is connected with a line and wherein another connector element is connected with a load. The bus apparatus is formed by receiving the bus elements in channels formed in layers of a thermally conductive and electrically insulative material, and the layers are bonded together with the use of a bonding material to cause the bus elements to become laminated within the interior of the substrate.
Abstract:
A circuit breaker panel includes a panel having a surface; an electrically conductive grounding member, such as a grounding strip, adapted for electrical connection to ground; a circuit breaker having an electrically conductive surface; and one or more fasteners fastening the circuit breaker to the panel. The electrically conductive grounding member is sandwiched between the surface of the panel and the electrically conductive surface of the circuit breaker. The electrically conductive circuit breaker surface electrically engages the electrically conductive grounding member.
Abstract:
This invention provides a process for forming an acetoacetarylide-based pigment, comprising: (a) reacting a diketene with an amine to form an acetoacetarylide slurry; (b) separating the acetoacetarylide as a solid from the acetoacetarylide slurry; (c) adding the acetoacetarylide solid to a homogenizer; (d) homogenizing the acetoacetarylide in the presence of water and one or more additives to form an acetoacetarylide slurry; (e) pumping the acetoacetarylide slurry to a reaction tank; (f) adding an alkali or alkaline metal base to the slurry; (g) adding an acid to form a precipitate of the acetoacetarylide; and (h) reacting the precipitate with an azo compound, thereby forming a pigment. This invention also includes the pigments and intermediates thereto formed by the above processes.