摘要:
Methods and apparatus for producing a touch sensitive LCD employing a semiconductor on glass (SiOG) structure provide for: a glass or glass-ceramic substrate; a single crystal semiconductor layer bonded to the glass or glass-ceramic substrate; display circuitry including a plurality of thin-film transistors disposed on the single crystal semiconductor layer and forming a matrix of display pixels; display control circuitry operable to drive the display circuitry to produce viewable images; and sensing circuitry operable to detect electrical characteristic changes in one or more of the single crystal semiconductor layer and the display circuitry, the electrical characteristic changes resulting from user touch events.
摘要:
Disclosed are methods for making SOI and SOG structures using purified ion shower for implanting ions to the donor substrate. The purified ion shower provides expedient, efficient, low-cost and effective ion implantation while minimizing damage to the exfoliation film.
摘要:
Methods and apparatus provide for performing an ion exchange process by immersing a glass sheet into a molten salt bath at one or more first temperatures for a first period of time such that ions within the glass sheet proximate to a surface thereof are exchanged for larger ions from the molten salt bath, thereby producing: (i) an initial compressive stress (iCS) at the surface of the glass sheet, (ii) an initial depth of compressive layer (iDOL) into the glass sheet, and (iii) an initial central tension (iCT) within the glass sheet; and annealing the glass sheet, after the ion exchange process has been completed, by elevating the glass sheet to one or more second temperatures for a second period of time such that at least one of the initial compressive stress (iCS), the initial depth of compressive layer (iDOL), and the initial central tension (iCT) are modified.
摘要:
Methods and apparatus provide for forming a semiconductor-on-insulator (SOI) structure, including subjecting a implantation surface of a donor semiconductor wafer to an ion implantation step to create a weakened slice in cross-section defining an exfoliation layer of the donor semiconductor wafer; and subjecting the donor semiconductor wafer to a spatial variation step, either before, during or after the ion implantation step, such that at least one parameter of the weakened slice varies spatially across the weakened slice in at least one of X- and Y- axial directions.
摘要:
Methods and apparatus provide for forming a semiconductor-on-insulator (SOI) structure, including subjecting a implantation surface of a donor semiconductor wafer to an ion implantation step to create a weakened slice in cross-section defining an exfoliation layer of the donor semiconductor wafer; and subjecting the donor semiconductor wafer to a spatial variation step, either before, during or after the ion implantation step, such that at least one parameter of the weakened slice varies spatially across the weakened slice in at least one of X- and Y-axial directions.
摘要:
Disclosed are methods for making SOI and SOG structures using purified ion shower for implanting ions to the donor substrate. The purified ion shower provides expedient, efficient, low-cost and effective ion implantation while minimizing damage to the exfoliation film.
摘要:
A process of making semiconductor-on-glass substrates having a relatively stiff (e.g. relatively high Young's modulus of 125 or higher) stiffening layer between the silicon film and the glass in an ion implantation thin film transfer process by depositing a stiffening layer or layers on one of the donor wafer or the glass substrate in order to eliminate the canyons and pin holes that otherwise form in the surface of the transferred silicon film during the thin film transfer process. The new stiffening layer may be formed of a material, such as silicon nitride, that also serves as an efficient barrier against penetration of sodium and other harmful impurities from the glass substrate into the silicon film.
摘要:
Methods and apparatus provide for forming a semiconductor-on-insulator (SOI) structure, including subjecting a implantation surface of a donor semiconductor wafer to an ion implantation step to create a weakened slice in cross-section defining an exfoliation layer of the donor semiconductor wafer; and subjecting the donor semiconductor wafer to a spatial variation step, either before, during or after the ion implantation step, such that at least one parameter of the weakened slice varies spatially across the weakened slice in at least one of X- and Y- axial directions.
摘要:
A semiconductor-on-glass substrate having a relatively stiff (e.g. relatively high Young's modulus of 125 or higher) stiffening layer or layers placed between the silicon film and the glass in order to eliminate the canyons and pin holes that otherwise form in the surface of the transferred silicon film during the ion implantation thin film transfer process. The new stiffening layer may be formed of a material, such as silicon nitride, that also serves as an efficient barrier against penetration of sodium and other harmful impurities from the glass substrate into the silicon film.
摘要:
Methods and apparatus provide for forming a semiconductor-on-insulator (SOI) structure, including subjecting a implantation surface of a donor semiconductor wafer to an ion implantation step to create a weakened slice in cross-section defining an exfoliation layer of the donor semiconductor wafer; and subjecting the donor semiconductor wafer to a spatial variation step, either before, during or after the ion implantation step, such that at least one parameter of the weakened slice varies spatially across the weakened slice in at least one of X- and Y-axial directions.