摘要:
A method for forming a plated layer. There is first provided a substrate. There is then formed over the substrate a masking frame employed for masking frame plating a masking frame plated layer within the masking frame, where the masking frame is fabricated to provide an overhang of an upper portion of the masking frame spaced further from the substrate with respect to a lower portion of the masking frame spaced closer to the substrate. Finally, there is then plated the masking frame plated layer within the masking frame. The method is useful for forming masking frame plated magnetic pole tip stack layers with enhanced planarity dimensional control within magnetic transducer elements.
摘要:
A method for forming a magnetoresistive (MR) sensor element, and a magnetoresistive sensor element fabricated in accord with the method. There is first provided a substrate. There is then formed over the substrate a magnetoresistive (MR) layer comprising: (1) a bulk layer of the magnetoresistive (MR) layer formed of a first magnetoresistive (MR) material optimized to provide an enhanced magnetoresistive (MR) resistivity sensitivity of the magnetoresistive (MR) layer; and (2) a surface layer of the magnetoresistive (MR) layer formed of a second magnetoresistive (MR) material optimized to provide an enhanced magnetic exchange bias when forming a magnetic exchange bias layer upon the surface layer of the magnetoresistive (MR) layer. Finally, there is then formed upon the surface layer of the magnetoresistive (MR) layer the magnetic exchange bias layer. The method contemplates an magnetoresistive (MR) sensor element fabricated in accord with the method. The method is particularly useful for forming a dual stripe magnetoresistive (DSMR) sensor element by employing a single magnetic exchange bias material with separate blocking temperatures.
摘要:
A method for forming a magnetoresistive (MR) sensor element. There is first provided a substrate. There is then formed over the substrate a seed layer. There is then formed contacting a pair of opposite ends of the seed layer a pair of patterned conductor lead layer structures. There is then etched, while employing an ion etch method, the seed layer and the pair of patterned conductor lead layer structures to form an ion etched seed layer and a pair of ion etched patterned conductor lead layer structures. Finally, there is then formed upon the ion etched seed layer and the pair of ion etched patterned conductor lead layers structures a magnetoresistive (MR) layered structure. Within the magnetoresistive (MR) sensor element, the pair of patterned conductor lead layer structures may be formed within a pair of recesses within an ion etch recessed dielectric isolation layer.
摘要:
A method for forming a bi-layer lift-off mask, including a hardened photoresistive stencil layer on a PMGI layer, for use in fabricating GMR read-head sensors with trackwidths of less than 0.1 microns and TMJ MRAM devices of similar critical dimensions. The stencil portion of the mask includes a narrow portion with sharply defined edge and corners which are formed, without rounding or extreme undercut, by a photolithographic process which includes the formation, in a first development process, of auxiliary pattern pieces over the corners of the stencil and a subsequent oxidation in ozone for removing those auxiliary pattern pieces and obtaining sharply defined edge and corners and a controlled dissolution of the PMGI layer.
摘要:
The problem of increased edge sensitivity associated with the reduction of the spacing between bias magnets in a CPP head has been solved by limiting the width of the bias cancellation layer and by adding an extra layer of insulation to ensure that current through the device flows only through its central area, thereby minimizing its edge reading sensitivity.
摘要:
A method for fabricating a current-perpendicular-to-plane (CPP) giant magnetoresistive (GMR) sensor of the synthetic spin valve type is provided, the method including an electron-beam lithographic process employing both primary and secondary electron absorption and first and second self-aligned lift-off processes for patterning the capped ferromagnetic free layer and the conducting, non-magnetic spacer layer. The sensor so fabricated has reduced resistance and increased sensitivity.
摘要:
A major problem in Lead Overlay design for GMR structures is that the magnetic read track width is wider than the physical read track width. This is due to high interfacial resistance between the leads and the GMR layer which is an unavoidable side effect of prior art methods. The present invention uses electroplating preceded by a wet etch to fabricate the leads. This approach requires only a thin protection layer over the GMR layer to ensure that interface resistance is minimal. Using wet surface cleaning avoids sputtering defects and plating is compatible with this so the cleaned surface is preserved Only a single lithography step is needed to define the track since there is no re-deposition involved.
摘要:
A merged read/write magnetic recording head comprises a low magnetic moment first magnetic shield layer over a substrate. A read gap layer with a magnetoresistive head is formed over the first shield layer. A shared pole comprises a low magnetic moment second magnetic shield layer plated on a sputtered seed PLM layer over the read gap layer, a non-magnetic layer plated over the PLM layer and a HMM lower pole layer plated over the second magnetic shield layer. A write gap layer is formed over the first high magnetic moment pole layer of the shared pole. An upper pole comprises a high magnetic moment pole layer over the write gap layer.
摘要:
A major problem in Lead Overlay design for GMR structures is that the magnetic read track width is wider than the physical read track width. This is due to high interfacial resistance between the leads and the GMR layer which is an unavoidable side effect of prior art methods. The present invention uses electroplating preceded by a wet etch to fabricate the leads. This approach requires only a thin protection layer over the GMR layer to ensure that interface resistance is minimal. Using wet surface cleaning avoids sputtering defects and plating is compatible with this so the cleaned surface is preserved Only a single lithography step is needed to define the track since there is no re-deposition involved.
摘要:
A method for forming a bi-layer lift-off mask, including a hardened photoresistive stencil layer on a PMGI layer, for use in fabricating GMR read-head sensors with trackwidths of less than 0.1 microns and TMJ MRAM devices of similar critical dimensions. The stencil portion of the mask includes a narrow portion with sharply defined edge and corners which are formed, without rounding or extreme undercut, by a photolithographic process which includes the formation, in a first development process, of auxiliary pattern pieces over the corners of the stencil and a subsequent oxidation in ozone for removing those auxiliary pattern pieces and obtaining sharply defined edge and corners and a controlled dissolution of the PMGI layer.